

V900/V910

Драйвер монополярного и биполярного электронного TPB

Руководство **Пользователя**

1. ВСТУПЛЕНИЕ	5
1.1. Как пользоваться данным Руководством	
1.2. Общее описание	5
1.2.1. Основные функции	6
2. МОДЕЛИ И ХАРАКТЕРИСТИКИ	7
2.1. Модели	7
2.1.1. Клавиатура	
2.1.2. Перечень совместимых клапанов	
2.2. Аксессуары	
3. МЕХАНИЧЕСКАЯ УСТАНОВКА	10
3.1. Установка V900/V910	
3.1.1. Доступ к DIP переключателям и разъему для SKP 10	
3.2. Установка клавиатуры SKP 10	
3.3. Механические размеры	
4. ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ	13
4.1. Правила и практические рекомендации подключения	
4.1.1. Правила подключения кабелей	
4.1.2. Защита выходов от повреждения индуктивной нагрузкой	
4.1.4. Источник питания - высоковольные релейные выходы	
4.1.5. Аналоговые входы - датчики	
4.2. Подключение по шине последовательного доступа	
4.3. Схемы подключения	
4.3.1. Подключения совместимых моделей Электронных ТРВ	
5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
5.1. Общая техническая спецификация	25
5.2. Характеристики Входов и Выходов	25
5.2.1. Характеристики Аналоговых входов	
5.2.2. Характеристики Аналоговых входов	26
5.3. Характеристики шины последовательного доступа	26
5.4. Механические характеристики	27
5.5. Источник Питания	27
5.6. Разрешенное использование	28
5.6.1. Запрещенное использование	28
5.7. Ответственность и остаточные риски	28

5.8. Отклонение претензий	28
5.9. Утилизация	
6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ	29
6.1. Индикаторы драйвера V900/V910	
6.2. Клавиатура SKP 10	
6.2.1. Индикаторы клавиатуры SKP 10	
6.3. Доступ к папкам – структура меню	31
6.3.1. Настройка основного дисплея	
6.3.2. Меню Состояния	
6.3.2.1. Задание рабочей точки	
6.3.2.2. Просмотр Входов и Выходов	
6.3.2.3. Просмотр Аварий (папка AL)	
6.3.3.1. Параметры (папка PAr)	
6.3.4. Мультифункциональный ключ (папка Par/FnC)	
6.3.5. Ввод пароля (папка Par/PASS)	38
7. НАСТРОЙКА ФИЗИЧЕСКИХ РЕСУРСОВ	40
7.1. Вступление	40
7.2. Аналоговые входы	40
7.2.1. Прямое управление открытием клапана	
7.3. Цифровые входы	43
7.4. Цифровые выходы	44
7.5. Таблица DIP переключателей	44
8. РАБОТА	45
8.1. Настройка насыщения	45
8.2. Выбор типа системы dE21	45
8.3. МОР (Максимальное Рабочее Давление)	46
8.4. Регулятор Включен/вЫключен	46
8.5. Регулятор давления установки на CO ₂	47
9. ПРИМЕНЕНИЯ	49
9.1. Каскадная система (исходная настройка)	49
9.1.1. Отдельно стоящий Драйвер (исходная конфигурация)	
9.1.2. Драйвер под управлением ЕWCM EO	
9.1.3. Управление через последовательный порт	53
9.2. Обратное давление	56
9.3. Перепуск Горячего газа	58
9.4. Защита от высокого нагнетания	60
9.4.1. Защита от высокого давления нагнетания	

9.4.2. Защита от высокой температуры нагнетания	62
9.5. Пост-нагрев в Вентиляционных установках	64
9.6. Удаленный контроль производительности	66
9.7. Охладитель жидкости	69
9.8. Холодильный прилавок с управлением Включен/вЫключен	71
9.9. Регулятор подачи жидкости с дополнительным термостатом	74
10. ПАРАМЕТРЫ (PAr)	77
10.1. Таблицы Параметры, Визуализация Папок и Клиентская	78
10.1.3. Параметры настройки клапана	
10.1.4. Параметры настройки клапанов dE01dE09, dE80 при dE00 = 0 10.1.5. Параметры настройки клапанов dE01dE09, dE80 при dE00 ≠0	
10.1.6. Визуализация папок параметров	
10.1.7. Клиентская таблица	
11. АВАРИИ	106
11.1. Таблица аварий	
11.1. Таблица аварий 12. UNICARD / MFK (папка FnC)	
•	108
12. UNICARD / MFK (папка FnC)	108 109 109
 UNICARD / MFK (папка FnC). Загрузка/Выгрузка с DIР переключателями	108 109 109
 UNICARD / MFK (папка FnC). Загрузка/Выгрузка с DIР переключателями	108109109110110
 UNICARD / MFK (папка FnC). Загрузка/Выгрузка с DIР переключателями	108109109110110
 UNICARD / MFK (папка FnC). Загрузка/Выгрузка с DIР переключателями	
 UNICARD / MFK (папка FnC). Загрузка/Выгрузка с DIР переключателями	
 UNICARD / MFK (папка FnC). Загрузка/Выгрузка с DIР переключателями	

1. ВСТУПЛЕНИЕ

1.1. Как пользоваться данным Руководством

Данное руководство использует следующие соглашения по выделению отдельных частей тескста:

Λ	Важно
	ражно

Информация которую пользователь ДОЛЖЕН прочесть и учитывать при работе или установке во

избежание повреждения системы или причинения вреда здоровью людей.

Указывает на дополнительную информацию, которая должна быть учтена пользователем.

Пояснения, которые призваны помочь пользователю лучше понять представленную информацию

и лучше ее использовать в работе.

* ** 0 00

Дополнительные пояснения к выше представленной информации (с указанными значками).

Рис. 1, 1 - Рис. 1, и т.п.

Ссылки на рисунки, детали на рисунках, части текста. Ссылки на рисунки представляются аббревиатурой с жирным шрифтом (т.е. "**Pис.**") и номером данного рисунка в документе (например, **Pис. 1**). Для компонентов рисунков добавляется буква или цифра перед ссылкой рисунка (например, **1 - Рис. 1**). Ссылки на часть текста даются через указание номера и названия соответствующего раздела, подраздела, параграфа и подпараграфа документа и номера страницы.

1.2. Общее описание

V900/V910 - это компактное решение платформы Eliwell для драйверов монополярных и биполярных шаговых моторизованных электронных ТРВ, применимых в системах Обогрева, Вентиляции, кондиционирования воздуха, Холодопроизводства и других.

Возможность выбора типа хладогента и совместимость с наиболее распространенными на ранке клапанами делает V900/ V910 действительно универсальным..

V900/V910 так же допускает настройку на дополнительный тип хладогента, которого нет в исходных настройках прибора.

Управляемый током клапан и независимая работа на нагрев и охлаждение с двойным регулятором обеспечивает улучшенные рабочие характеристики.

V900/V910 на практике обеспечивает очень точный, стабильный и надежный поток хладогента и, как следствие, повышенную эффективность и энергосбережение благодаря поддержанию перегрева и открытия клапана в точном соответствии с запросами системы в изменяющихся рабочих условиях.

Надежность обеспечивается изоляцией подключений по шине последовательного доступа а так же резервированием датчиков.

Клавиатура SKP 10 используется для настройки параметров и контроля состояния Драйвера и подключается через специальный разъем, находящийся под дверкой лицевой панели.

V900/V910 поддерживает стандартный протокол связи через порт последовательного доступа Modbus RTU, а так же позволяет загружать и выгружать параметры настройки и загружать программу работы прибора через Мультифункциональный ключ MFK..

Для подключения клавиатур SKP 10 и ратиометрических датчиков давления не требуется никаких дополнительных сетевых интерфейсов.

Все цифровые входы и выходы функционально независимы и настраиваются параметрами под требования системы.

Источник питания прибора 24В~/24В....

1.2.1. Основные функции

Основными функциями драйверов V900/V910 являются:

- V900 противодавление поддержание постоянного давления в системе
- V910 впрыск жидкости в теплообменник в подкритической системе на CO2 с итспользованием контроллера EWCM EO
- Выбор хладогента DIP переключателями под дверкой на личевой панели;
- Индикаторы отображения состояния драйвера;
- Настройка параметров с клавиатуры SKP10 или при помощи ПК;
- Карточка копирования UNICARD для загрузки и выгрузки параметров и загрузки программы (Загрузчик);
- Мультифункциональный ключ (МFK) для загрузки и выгрузки параметров и приложений;
- Программа DeviceManager для быстрого программирования параметров с ПК.
- Удаленная клавиатура (кабель до 100м) подключаемая напрямую (разъем под дверкой).
- Конфигурируемые датчики: NTC, Pt1000, с сигналами 4...20мA, 0...10B, 0...5B (ратиометрический).
- 2 цифровых входа для подачи команд и/или для аварий.

2. МОДЕЛИ И ХАРАКТЕРИСТИКИ

2.1. Модели

Модель	Аналоговые входы Низко вольт- ные	Свободные от напряжения Цифровые входы	Высоко вольтные Цифровые выходы	Цифровой выход Открытый коллектор	Встроенный порт шины RS-485	Источник питания
V900 RS485 BACK PRESSURE	2	2	1	1	ЕСТЬ	24B~/= Імакс = 0.8A/фазу
V910 RS485	4	2	1	1	ЕСТЬ	24B~/= Імакс = 0.8A/фазу

Таблица 1 Модели.

Клавиатура SKP10 опциональна и с драйвером не поставляется. Заказывайте ее отдельно.

2.1.1. Клавиатура

Модель	Установка	Размеры	Дисплей	Источник питания
SKP 10	на панель	74х32х30 мм	Индикаторный на 4 цифры	От Драйвера V900/V910

Таблица 2 Клавиатура

2.1.2. Перечень совместимых клапанов

Драйвер V900/V910 совместим с перечисленными ниже клапанами. Обращайтесь за технической поддержкой в Eliwell о информации по использованию других клапанов.

Eliwell не отвечает за информацию, предоставляемую производителями клапанов, включая технические модификации и/или обновления.

Всегда обращайтесь к документации на клапан, в особенности для проверки его функциональности.

Модель	Источник питания	Примечания
ELIWELL SXVB производства CASTEL	24B	Биполярный
ALCO EX5	24B	Биполярный
ALCO EX6	24B	Биполярный
ALCO EX7	24B	Биполярный
ALCO EX8	24B	Биполярный
DANFOSS ETS50	12B	Биполярный
DANFOSS ETS100	12B	Биполярный
SPORLAN SER(I) G, J, K, B, C, D	12B	Биполярный
SPORLAN SER 1.5 TO 20	12B	Биполярный
SPORLAN SEI-30	12B	Биполярный
SPORLAN SEI-50	12B	Биполярный
SPORLAN SEH	12B	только Биполярные модели
ELIWELL SXVU производства CASTEL	12B	Монополярный
SANHUA DPF(Q)/DPF(T01)	12B	Монополярный
ALCO EXM246/EXL246	12B	Монополярный

Таблица 3 Совместимые клапаны

2.2. Аксессуары

Фото	Код	Код заказа	Описание	Документация/ Примечание
	Клавиатура SKP10	SKP1000000000	клавиатура формата 32х74	смотри инструкцию 8Fl20016 Energy Flex GB-l
A RESE	Трансформатор	TF111205	трансформатор 230В~/24В~ 35ВА	Устанавливается на DIN рейку
	Мульти- функциональный ключ MFK	MFK100T000000	Карточка копирования для загрузки/выгрузки параметров и загрузки программы	-
		SN8DAC11502AV	датчик NTC , гол. 4x40 + браслет, кабель 1.5м, изоляция TPE, IP67	инструкция SN8DAC11502AV GB-I
	«БЫСТРЫЕ»	SN8DNB11502A0	датчик NTC , гол. 4x16 + браслет, кабель 1.5м, изоляция TPE, IP67	инструкция SN8DNB11502A0 GB-I
	датчики температуры	SN8DEC11502A0	датчик NTC, головка 4X40 сталь, кабель 1.5м, изоляция TPE, IP67	инструкция SN8DEC11502A0 GB-I
		SN8DEB21502C0	датчик NTC , гол. 6x20 + браслет, кабель 1.5м, изоляция TPE, IP68	инструкция SN8DEB21502C0 GB-I
		TD420010	EWPA 010 R 0/5В 0/10 Бар ратиометрический датчик с внутренней резьбой (мама)	
110	Ратиометрические датчики давления	TD420030	EWPA 030 R 0/5В 0/30 Бар ратиометрический датчик с внутренней резьбой (мама)	с кабелем packard IP67 длиной 2м
		TD420050	EWPA 050 R 0/5B 0/50 Бар ратиометрический датчик с внутренней резьбой (мама)	
	Токовые датчики давления 420mA	1/4 SAE (папа) внешняя резьба ТD220050 EWPA050 420mA/050Бар IP54 TD240050 EWPA050 420mA/-0.50Бар IP67 TD220007 EWPA007 420mA/-0.57Бар IP54 TD240007 EWPA007 420mA/-0.57Бар IP67 1/4 SAE (мама) внутренняя резьба TD320050 EWPA050 420mA/050Бар IP54 TD340050 EWPA050 420mA/050Бар IP67 TD320007 EWPA007 420mA/-0.57Бар IP67		packard IP67 с кабелем 2м
	Интерфейсный модуль	Обращайтесь в оффисы продаж Eliwell	Интерфейс для DeviceManager (DMI)	инструкция DMI 9IS42020 GB-I

Фото	Код	Код заказа	Описание	Документация/ Примечание
	Внешняя карточка памяти с портами USB-TTL	Обращайтесь в офисы продаж Eliwell	UNICARD Карточка копирования параметров приборовEliwell с портами USB-TTL и возможностью программирования с программы DeviceManager	Инструкция 9IS24180 GB-I Смотри Руководство пользователя DeviceManager
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		BA11250N3700	Bus Adapter 130 TTL RS485 интерфейс преобразования шин TTL/RS-485 12 В для питания прибора TTL кабель, L = 1 м**	инструкция 9IS43084 BusAdapter
19 11 21 M M 11 12 14 1		BA10000R3700	Bus Adapter 150 TTL RS485 интерфейс преобразования шин TTL/RS-485 TTL кабель, L = 1 м**	130-150-350 GB-I-E-D-F
2000	модули внешних полючений		RadioAdapter TTL/WIRELESS 802.15.4 Беспроводный модуль сетевого подключения	инструкция 8FI40023 RadioAdapter GB-I-E-D-F
64 63 63		БарF0TS00NH00*		Руководство 9MAX0010 RadioAdapter GB-l-E-D-F
			WebAdapter Модуль доступа к прибору через	инструкция 9IS44065 WebAdapter GB-I-E-D- F-RUS
		WA0ET00X700	web обозреватель с LAN портом для подключения к сети	- Руководство 8MAx0202 WebAdapter X = 0 IT; 1 EN; 2 FR; 3 ES; 5 DE; A RU
WebAdapter	WAOWFOOX		WebAdapter Wi-Fi Модуль доступа к прибору через web обозреватель с Wi-Fi подклю- чением к сети	/
Device •	Программа настройки параметров приборов	Обращайтесь в оффисы продаж Eliwell	Device Manager	Руководство 8MAx0219 X = 0 IT; 1 EN; 2 FR; 3 ES; 5 DE; A RU

Таблица 4 Аксессуары

ОБЩИЕ ЗАМЕЧАНИЯ:

- Подключение клавиатуры 3-х проводным кабелем без дополнительных интерфейсных модулей.
- Eliwell имеет широкую гамму температурных датчиков NTC типа с различными головками, типами изоляции кабелей и длинами кабелей. Обращайтесь в оффисы продаж Eliwell.

^{*} Имеются различные модели. Обращайтесь в офисы продаж Eliwell..

^{*} Имеется версия с кабелем 2,5м, другие длины по запрос.

3. МЕХАНИЧЕСКАЯ УСТАНОВКА

3.1. Установка V900/V910

Для корректной работы прибора допустимая температура окружающей среды должна быть от −5 до 55 °C, при влажности воздуха не более 90% R.H. (без конденсата).

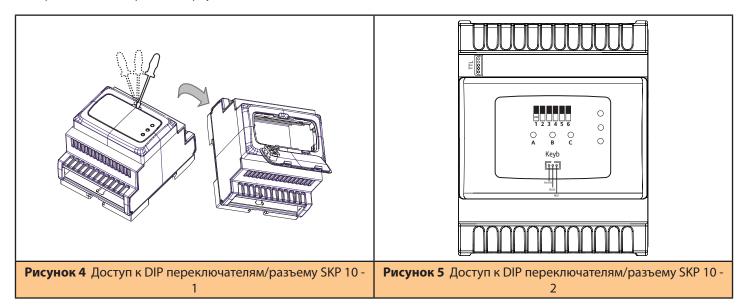
Не устанавливайте прибор в местах с повышенной влажностью и/или загрязнением; он разрабатывался для использования в нормальных или обычных условиях загрязнения. Оставляйте свободным пространство возле Вентиляционных отверстий прибора.

TTL порт находится в верхней части лицевой панели и кабель в него устанавливается вертикально.

Прибор разработан для установки на DIN рейку (формат 4DIN).

Используйте рисунки **РисРисунок 1**, **РисРисунок 2** и **РисРисунок 3** для правильной установки на DIN рейку в следующем порядке:

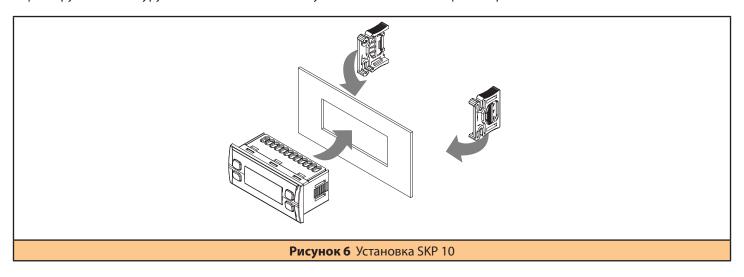
- 1. переместите две подпружиненных защелки в открытое положение (нажимайте отверткой от установочного отсека);
- 2. установите прибор на DIN рейку, нажмите пальцами на фиксаторы для установки их в защелкнутое положение.n.



3.1.1. Доступ к DIP переключателям и разъему для SKP 10

Используйте рисунки **Рисунок 4** и **Рисунок 5**, для получения доступа к DIP переключателям следующим образом:

- 1. при необходимости используйте шлицевую отвертку или ноготь указательного пальца для открытия дверки;
- 2. аккуратно установите DIP переключатели или подключите SKP 10 к соответствующему порту;
- 3. при желании закройте дверку лицевой панели нажатием пальцев на нее.


3.2. Установка клавиатуры SKP 10

Удаленная клавиатура SKP 10 разработана для установки на панель (**Рисунок 6**).

Тстановите клавиатуру SKP 10 соблюдая следующий порядок:

- 1. проделайте в панели отверстие 29х71 мм;
- 2. установите в это отверстие клавиатуру;

зафиксируйте клавиатуру SKP 10 на панели используя поставляемые с ней фиксаторы.

3.3. Механические размеры

	Длина (L) мм	Глубина (d) мм	Высота (Н) мм	Примечания
Лицевая панель SKP 10	76.4	-	35	(+0.2 мм)
Лицевая панель (крышка) V900/V910	70	-	45	(+0.2 мм)
Размеры клавиатуры SKP 10	86	30	26	-
Размеры драйвера V900/V910	70.2	61.6 56.4 от DIN рейки до крышки	87	4DIN
Отверстие для уста- новки SKP 10	71	-	29	(+0.2 мм/-0.1 мм)

Таблица 5 Механические размеры

4. ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ

4.1. Правила и практические рекомендации подключения

Ниже приведенная информация описывает правила подключения и соответствующие практические рекомендации ро использованию драйверов **Электронных ТРВ** серии **V900/V910**.

Снимите питание со всего оборудования включая подключаемые устройства перед снятием крышки или дверки щитка, а так же перед установкой или снятием аксессуаров, оборудования, кабелей и проводов.

- Обязательно используйте соответствующие измерительные приборы для проверки отсутствия напряжения.
- Замените и зафиксируйте все все кожухи, аксессуары, оборудование, кабели и провода и убедитесь в наличии подключения силового заземления перед подачей питания на установку.
- Подаваемое напряжение должно соответствовать рабочему диапазону напряжения питания использующихся в установке устройств.

Разработчик любой системы управления должен предусматривать потенциальную возможность выхода из строя частей системы управления и для каждого из таких критических случаев предусмотреть безопасное состояние на время такого отказа и при возврате к нормальной работе.

- Необходимо предусмотреть отдельные или резервные устройства управления для наиболее критичных функций управления установкой.
- Средства управления установкой могут включать средства связи. Необходимо предусмотреть последствия возможных задержек в передаче данных и/или нарушения связи.
- Строго следуйте всем стандартам по предотвращению аварий и региональным правилам безопасности.
- Каждое из возможных применений данного оборудования должно быть отдельно протестировано на возможность обеспечения его правильной работы в различных обстановках до его использования в рабочих установках.

4.1.1. Правила подключения кабелей

Следующие правила должны соблюдаться при прокладке кабелей подключения драйверов **Электронных ТРВ** серии **V900/ V910**:

- Сигнальные кабели входов и выходов и шин связи должны прокладываться отдельно от силовых кабелей. Прокладывайте трассы этих кабелей в отдельных кабельных каналах.
- Убедитесь что рабочие условия и условия среды работы оборудования соответствуют заданным значениям.
- Используйте типоразмеры проводов, которые соответствуют требованиям по току и напряжению.
- Используйте медные провода (требуется).
- Используйте витую пару в экране для подключения аналоговых и высокочастотных цифровых входов и выходов.
- Используйте витую пару в экране для подключения сетевой шины и шин связи.

Используйте экранированные правильно заземленные кабели для всех аналоговых и высокочастотных цифровых входов и выходов , а так же для шин связи. Если для таких подключений Вы используете неэкранированный кабель, то электромагнитные помехи могут привести к искажению сигналов. Искаженные таким образом сигналы могут привести к неправильной работе контроллера и/или подключаемых к нему модулей и оборудования.

Используйте экранированные кабели для всех аналоговых и высокочастотных цифровых входов и выходов.

- Заземляйте экранированные кабели аналоговых и высокочастотных цифровых входов и выходов в одной точке (1).
- Прокладывайте сигнальные кабели входов и выходов и шин связи отдельно от кабелей силовых подключений.
- Делайте кабели подключений максимально короткими и не обвивайте их вокруг электрически подключенных частей.

(1) Многоточечное заземление допускается при использовании эквипотенциальной панели заземления, размеренной так, что бы исключить повреждение экранированного кабеля при появлении короткого замыкания в силовых цепях.

ПОМНИТЕ: Температура поверхности не должна превышать 60°С. Прокладывайте кабели первичной стороны (подключенные к питающей сети) отдельно и разнесенно с цепями вторичной стороны (низковольтные цепи от преобразователя сетевого напряжения). При невозможности их разнесения требуется наличие двойной изоляции на проводах или кабеле.

4.1.2. Защита выходов от повреждения Индуктивной нагрузкой

В зависимости от типа нагрузки могут потребоваться защитные цепи для выходов контроллера и некоторых модулей. Индуктивные нагрузки в цепях их коммутирующих могут создавать броски напряжения, способные повредить выходы устройства или значительно сократить срок их службы.

Если прибор или модуль имеет релейные выходы, то эти выходы расчитаны на напряжение до 240 В переменного тока. Результатом воздействия индуктивной нагрузки может стать слипание контактов с потерей управляемости установки. Для каждой индуктивной нагрузки необходимо устанавливать защитное устройство, такое как ограничитель пиковых выбросов, RC фильтр или обратный диод. Емкостные нагрузки недопустимы для таких реле.

Всегда защищайте релейные выходы от воздействия индуктивных нагрузок с помощью соответствующих внешних защитных цепей или устройств.

НЕ подключайте к релейным выходам прибора и модулей емкостные нагрузки.

Защитная цепь А: данная защитная цепь может использоваться в цепях и переменного и постоянного тока.

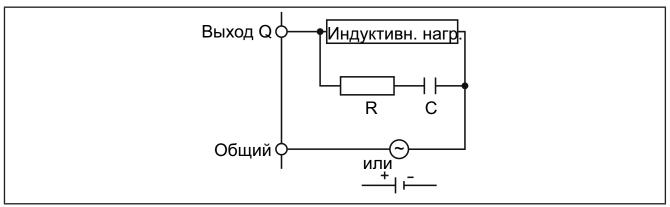


Рисунок 7 Защитная цепь А

С - конденсатор с емкостью от 0,1 до 1,0 мкФ

R - резистор с сопротивлением, соизмеримым с сопротивлением нагрузки

Защитная цепь В: данная защитная цепь может использоваться ТОЛЬКО в цепях и постоянного тока.

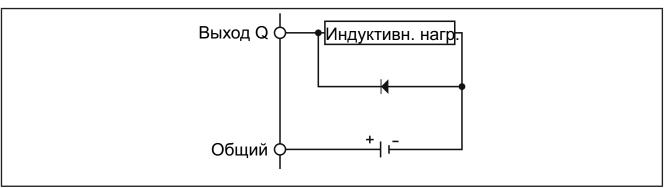


Рисунок 8 Защитная цепь В

Используйте диод со следующими характеристиками:

- Выдерживаемое обратное напряжение: напряжение цепи нагрузки х 10.
- Допустимый прямой ток: превышает максимальный ток нагрузки.

Защитная цепь С: данная защитная цепь может использоваться в цепях и переменного и постоянного тока.

Рисунок 9 Защитная цепь С

В установках, где происходит частое или высокочастотное включение и выключение индуктивной нагрузки предполагается использовать Варистор с уровнем энергии (J), который превышает уровень пиковой энергии нагрузки на 20 % или более.

ПОМНИТЕ: Размещайте защитные цепи и устройства максимально близко к нагрузке.

4.1.4 - Рассмотрение специфических случаев

Необходимо остерегаться повреждения прибора при его обслуживании электростатическим разрядом. Это особо касается разъемов и, в некоторых случаях, незащищенных открытых плат, которые особо уязвимы воздействию таких разрядов.

Храните оборудование в токонепроводящей упаковке вплоть до его установки на оборудовании.

- Только установка оборудования в соответствующе огражденном или закрытом месте исключающем случайный доступ обеспечивает защиту от повреждения статическим электричеством согласно IEC 1000-4-2.
- Используйте проводящий антистатический браслет или аналогичное защитное устройство для разряда воздействия поля на заземление при обслуживании чувствительного к воздействию электростатитки оборудования.
- Постоянно разряжайте себя касаясь заземленных поверхностей или специальных антистатических матов перед обслуживанием чувствительного к воздействию электростатитки оборудования.

Перед выполнение любых работ убедитесь, что подключаете прибор к источнику питания соответствующего напряжения. Смотри раздел **'5.5. Источник Питания' на стр. 23**.

Перед подключением клапана внимательно настройте драйвер V900/V910 правильно выбрав тип драйвера из списка совместимых с драйвером типов.

Сверьте с информацию о параметрах от производителя клапанов с общими параметрами для этого типа клапанов.

Перед выполнением обслуживания или электроподключений обязательно снимите питание с установки.

Для правильного выполнения подключений следуйте данным инстанциям:

- Источник питания, отличающийся от специфицированного может значительно повредить систему.
- Для подключения к клеммам используйте кабели с проводниками соответствующего сечения.
- Разносите кабели датчиков и цифровых входов от кабелей индуктивных нагрузок и высоковольтных цепей для исключения воздействия электромагнитных помех. Не прокладывайте кабели датчиков около электрического оборудования (контакторов, измерителей и т.п.).
- Делайте соединения максимально короткими не допуская обвивания кабелей вокруг электроподключенных частейs.
- Во избежание электростатических разрядов не касайтесь электронных кампонетов на платах.
- Прибор необходимо запитывать от источника питания строго соответствующего описанию в Спецификации прибора.

сверьте этикетку клапана с приведенной в руководстве его производителя; перед подключение клапана правильно
настройте драйвер V900/V910 корректно выбрав тип клапана из списка совместимых типов клапанов.

4.1.3. Источник питания

НЕ-изолированный источник питания.

Если этот же источник питания или трансформатор используется и для других приборов и/или он имеет подключение к «Земле», то возникает значительный риск неправильной работы или даже повреждения драйвера/клапана.

4.1.4. Источник питания - высоковольные релейные выходы

Не превышайте максимально допустимый ток; для больших нагрузок используйте контакторы соответствующей мощности.

4.1.5. Аналоговые входы - датчики

Температурные датчики не имеют полярности и могут удлиняться обычным двух-проводным кабелем.

Удлинение датчиков снижает устойчивость прибора к воздействию электромагнитных помех: будьте чрезвычайно внимательны при прокладке кабелей таких датчиков.

Датчики давления полярность, которую необходимо строго соблюдать.

Сигнальные кабели (датчиков температуры и давления, цифровых входов и шин связи) необходимо прокладывать отдельно от высоковольтных кабелей.

Рекомендуется использовать датчики производства Eliwell (обращайтесь в оффисы продаж).

4.2. Подключение по шине последовательного доступа

Метка	Описание
TTL	Используйте 5-ти жильный TTL кабель длиной 30 см. Рекомендуется поставляемый Eliwell TTL кабель. Запрашивайте отделы продаж Eliwell о его наличии.
MFK	TTL порт находится под дверкой крышки прибора и позволяет подключить MFK
Keyb	3-контактный LAN порт находится под дверкой крышки прибора и позволяет подключить SKP 10. Максимальная удаленность клавиатуры 100м

Таблица 6 Подключение последовательной шины

Клавиатура позволяет настроить прибор и просматривать состояние его ресурсов.

Рекомендуется использовать такое подключение как временное для настройки и отладки драйвера

4.3. Схемы подключения

Обозначения на Диаграммах подключения		
Английский (на схемах)	Русский	
Black	Черный	
Blue	Синий	
Brown	Коричневый	
Red	Красный	
White	Белый	
Yellow	Желтый	
Signal	Сигнал	
Transducer	Датчик	
Transducer Power Supply	Источник питания датчика	

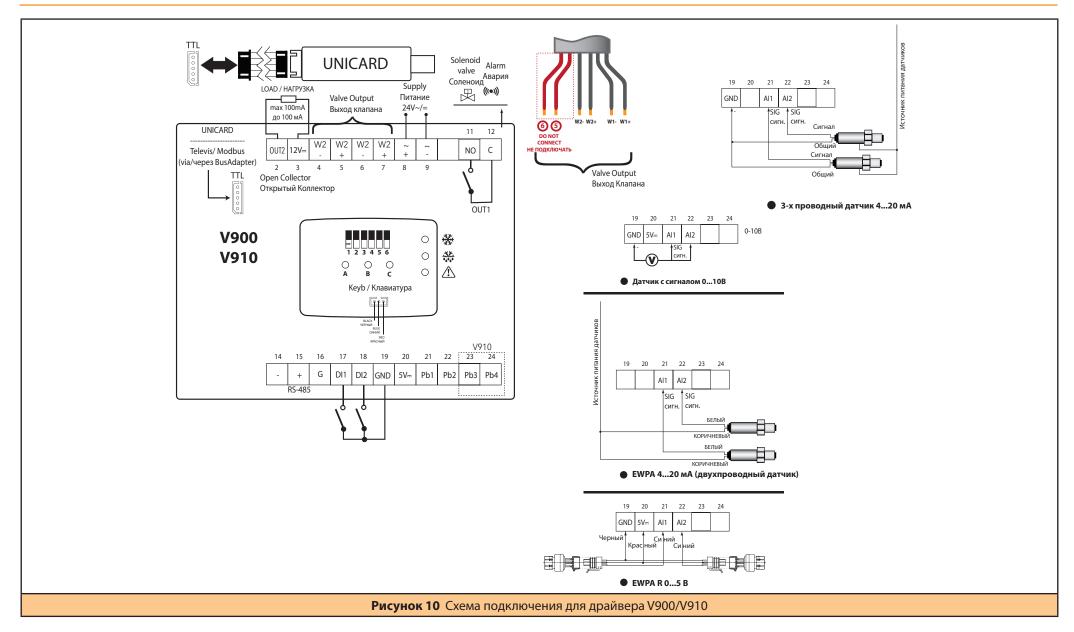
Таблица 7 Обозначения на Диаграммах подключения

Клеммы	Метка	Описание	Примечания	Параметры
2-3	Open collector	Соленоидный клапан/ Авария	2=dO (открытый коллектор); 3= 12B= Максимальная нагрузка 100 мА	dL91
3	12V 	Источник питания датчика	Источник питания токовых датчиков и выхода Открытый коллектор	-
4-5-6-7	Valve Output	Выход клапана	4= W2-; 5=W2+; 6=W1-; 7=W1+	-
8-9	Supply	Источник питания	Источник питания B=: 8 = +; 9 = - Соблюдайте полярность	
11-12	OUT1	Релейный выход	Соленоидный клапан/ Авария	dL90
14-15-16	485	встроенный порт для Televis/Modbus		-
17	DI1	Цифровой вход 1	Подключение цифровых входов	dL40
18	DI2	Цифровой вход 2	к запитанным выходам строго запрещено	dL41
19	GND	Общий сигнальный		-
20	5V	Источник питания датчика	Источник питания ратиометрических датчиков	-

Таблица 8 Схемы подключения (общие клеммы V900 и V910)

Клеммы	Метка	Описание	Примечания	Параметры	
21*	Pb1	Аналоговый вход 1 датчик Насыщения		dL10 / dL11 / dL20	
22*	Pb2	Аналоговый вход 2	датчик Нагнетания	dL12 / dL13 / dL21	
23*	Pb3	Аналоговый вход 3	датчик на выходе Испарителя (для перегрева)	dL22	
24*	Pb4	Аналоговый вход 4	не используется	dL23	

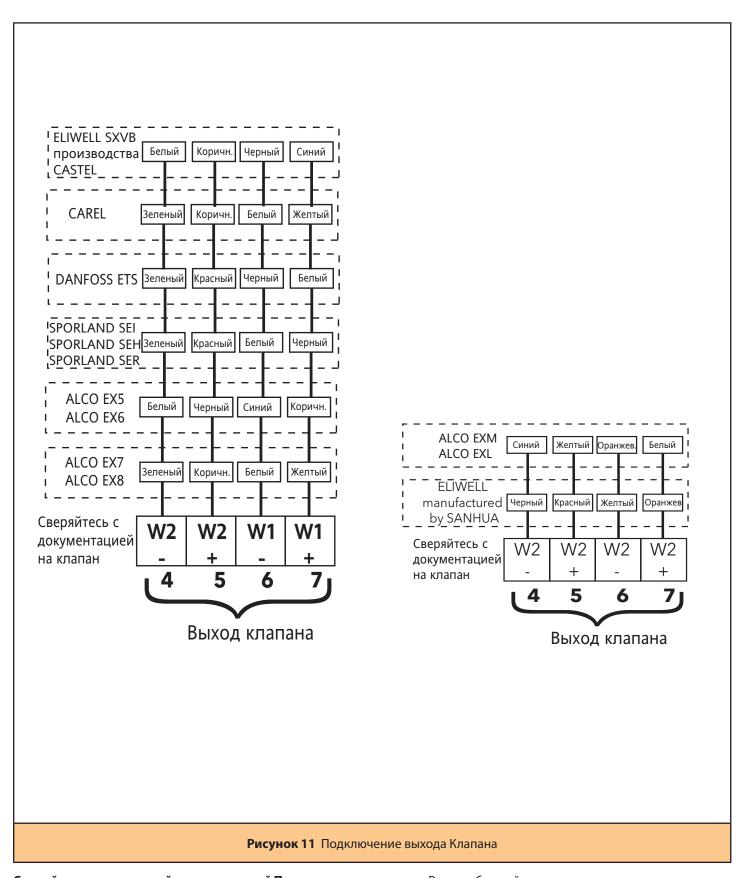
Таблица 9 Схемы подключения (только для V910)


^{*} Исходные настройки для каскадной установки на ${\rm CO_2}$

Клеммы	Метка	Описание	Примечания	Параметры
21*	Pb1	Аналоговый вход 1	датчик Нагнетания	dL10 / dL11 / dL20
22*	Pb2	Аналоговый вход 2	не используется	dL12 / dL13 / dL21

Таблица 10 Схемы подключения (только для V900)

^{*} Исходные настройки для каскадной установки поддержания постоянного давления (Противодавление)



Страница. 18 / 117

4.3.1. Подключения совместимых моделей Электронных ТРВ

Сверяйтесь с технической документацией Производителя клапана: Всегда обращайтесь к документации производителя. Eliwell не ответственен, за информацию, предоставляемую производителями клапанов включая любые модификации и обновления. Для использования клапанов других типов проконсультируйтесь предварительно с Eliwell.

4.3.2. Подключение к V900/V910 клавиатуры SKP 10

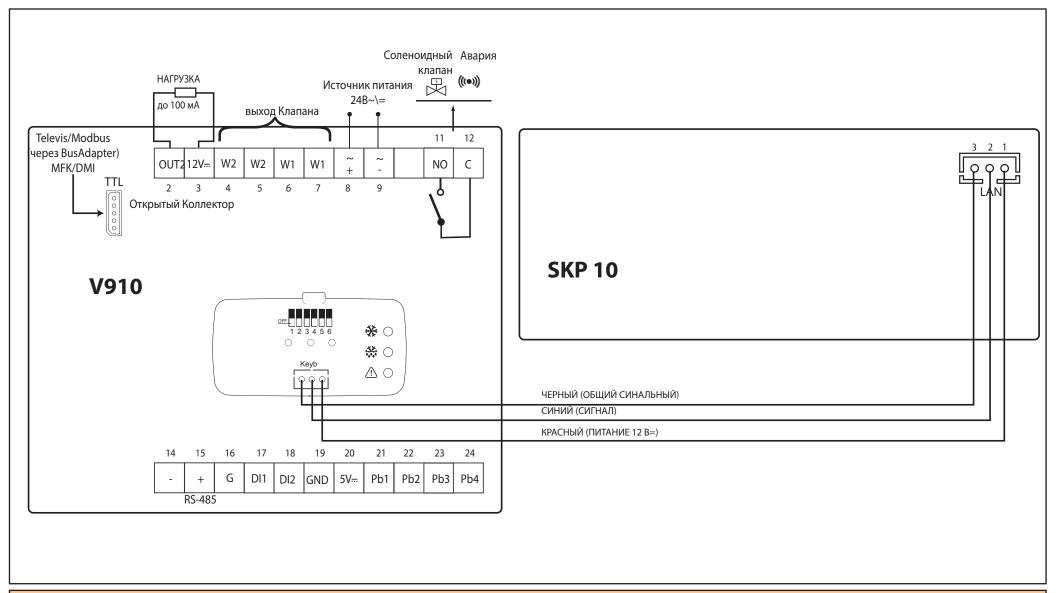


Рисунок 12 Подключение к V900/V910 клавиатуры SKP 10

5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

5.1. Общая техническая спецификация

Продукт отвечает следующим общепринятым стандартам:	EN 60730-2-6 / EN 60730-2-9 / EN 60730-1	
Использование	устройство по функциям (не безопасности) для внедрения (добавления) в систему	
Установка	На рейку DIN Omega (4DIN)	
Тип действия	1.B	
Класс загрязнения	2 (нормальное)	
Категория по перенапряжению	II	
Допустимое импульсное напряжение	2500 B	
Цифровые выходы	Смотри этикетку на приборе	
Категория пожарной безопасности	D	
Класс программы и ее структуры	A	
Для каждой цепи тип рассоединения или прерывания	микропереключатель рассоединения	
PTI изоляционных материалов	PTI 250V	
Период электрических воздействий на изолированные части	продолжительный	

Таблица 11 Классификация прибора

	Номинал	Минимум	Максимум
Напряжение источника питания Источник питания НЕ изолирован	24B~/ ±10%	-	-
Частота источника питания	50Гц/60Гц	-	-
Потребляемая мощность	30ВА / 25Вт	-	-
Класс изоляции	2	-	-
Рабочая температура окружающего воздуха	25 °C	-5 °C	55 ℃
Рабочая влажность окружающего воздуха (без конденсата)	30%	10%	90%
Температура окружающего воздуха при хранении	25 ℃	-20 ℃	85 ℃
Влажность окружающего воздуха при хранении (без конденсата)	30%	10%	90%

Таблица 12 Общая техническая спецификация

5.2. Характеристики Входов и Выходов

Тип и Метка	Описание		
Цифровые входы	2 цифровых входа без напряжения		
ddi1 и ddi2	Ток при замыкании на общий (GND): 0.5 мА		
Высоковольтный	1 двухконтактное (SPST) реле,		
цифровой выход ddO1	Нормально разомкнуто (N.O.) 5 A 250 B~		

Тип и Метка	Описание
Аналоговые входы dAi1 dAi2 dAi3 dAi4	dAi1 dAi2 2 конфигурируемых входа: а) температурный NTC 103AT-2 10kΩ, Pt1000 b) токовый вход 420 мА / ратиометрич. 0-5 В c) вход с сигналом напряжения 0-10 В dAi3 dAi4 a) температурный NTC 103AT 10kΩ, Pt1000 диапазон измерения -50°C 99.9°C;
Открытый коллектор, низковольтный безопасный (SELV) цифровой выход ddO2	1 выход Открытый Коллектор Максимальный ток 100 мА Напряжение 12 B=

Таблица 13 Характеристики Входов и Выходов

5.2.1. Характеристики Аналоговых входов

5.2.2. Характеристики Аналоговых входов

	NTC103*	Pt1000*	420 мА	010 B	0-5 B			
	-50+99.9 °C	-50+99.9 °C						
Al1	4	4	4	4	4			
Al2	4	4	4	4	4			
AI3	4	4	-	-	-			
Al4	4	4	-	-	-			
Разрешение	0.1 °C	0.1 °C	0.1 Бар	0.1 Бар	0.1 Бар			
точность от шкалы	1%	1%	1%	1%	1%			
Импеданс	-	-	100 Ом	21 кОм	110 кОм			
	NTC: NTC (103AT-2) 10 кОм при 25°C значение BETA 3435							
* ла	* датчики в комплект не входят - обращайтесь в офисы продаж для подбора аксессуаров							

Таблица 14 Характеристики Аналоговых входов

5.3. Характеристики шины последовательного доступа

Метка	Описание		
TTL	1 TTL порт для подключения к Персональному компьютеру через интерфейсный модуль DMI		
(UNICARD/MFK/DMI)	1 TTL порт для подключения к Мультифункциональному ключу MFK или к Карточке копирования UNICARD для загрузки и выгрузки параметров и загрузки программы		
Keyb (Клавиатура)	3-контактный JST разъем под дверкой для подключения удаленной клавиатуры SKP 10		
RS-485	Встроенный оптоизолированный порт RS-485		

Таблица 15 Характеристики шины последовательного доступа

5.4. Механические характеристики

Описание	Модели			
Клеммы и	1 разъемы			
Один 3-контактный JST разъем д ля удаленной клавиатуры SKP 10 Используется с кабелем COLV000033200	Все модели			
Корпус				
Пластик PC+ABS с уровнем пожарной безопасности V0	Все модели			

Таблица 16 Механические характеристики

5.5. Источник Питания

Драйверы Электронных TPB серии V900/V910 и подключаемые устройства имеют питание с номинальным напряжением $24 \, \text{B} \sim / \, 24 \, \text{B} =$. Источник питания или трансформатор должен быть стандартизован как Безопасное Экста Низкое Напряжение (Safety Extra Low Voltage - SELV) в соответствии с IEC 61140. Эти источники питания имеют изолированные входные и выходные цепи относительно источника питания и не имеют подключения к «Земле» и системам PELV и другим SELV на вторичной стороне.

Не подключайте «Нулевой» или «Общий» контакт источника питания или трансформатора, питающего этот прибор к какому бы то ни было внешнему заземлению.

Не подключайте «Нулевой» или «Общий» контакт датчиков или приводов, подключенных к этому прибору, к какому бы то ни было внешнему заземлению.

При необходимости используйте дополнительный изолированный от другого оборудования источник питания для питания датчиков или приводов.

При несоблюдении требований по уровню напряжения подключаемого источника питания и/или при несоответствующем обеспечении изолированности вторичного SELV контура прибор может работать неправильно или, даже, получить повреждения, устанить которые будет невозможно.

Не подключайте оборудование к сети напрямую минуя защитные цепи.

Используйте для питания прибора только изолированные и соответствующие требованиям SELV источники питания или трансформаторы.

Прибор нужно подключать к источнику питания или трансформатору соответствующего напряжения, который имеетт следующие характеристики:

Напряжение первичной стороны	Зависит от требований спецификации прибора и/или стандартов страны использования оборудования
Напряжение первичной стороны	24 B~/≔
Частота первичной стороны (для сети переменного напряжения)	50/60 Гц
Потребляемая мощность	35 BA

5.6. Разрешенное использование

Данный продукт используется для управления монополярными или биполярными электронными ТРВ с шаговыми моторами...

Для обеспечения безопасности прибор должен устанавливаться и использоваться в соответствии с поставляемой инструкцией, в частности, при эксплуатации доступ к частям под высоким напряжением должен быть закрыт.

Прибор необходимо соответственно защищать от влаги и грязи в рамках системы, где он используется, и доступ к нему должен быть невозможен без использования инструмента (за исключением лицевой панели).

Драйвер применим в домашнем холодильном или другом аналогичном оборудовании и тестировался на предмет безопасности в соответствии с общепринятыми Европейскими стандартами.

5.6.1. Запрещенное использование

Любое применение кроме разрешенного запрещено.

Контакты реле являются устройством функционального типа и могут повреждаться (с точки зрения электрического эффекта они могу оставаться постоянно разомкнутыми или же короткозамкнутыми). Любые защитные устройства, определяемые стандартами или общими рассуждениями о требованиях безопасности должны устанавливаться вне прибора.

5.7. Ответственность и остаточные риски

Eliwell не несет ответственности за ущерб, являющийся результатом:

- Неправильной установки/использования, в частности, вне соответствия требованиям безопасности, устанавливаемым законами или указанными в данном документе.
- Использования в оборудовании, которое не обеспечивает достаточной защиты от электрического удара, влаги и пыли в реальных условиях эксплуатации.
- Использования в оборудовании с доступом к частям под опасным напряжением без использования инструмента.
- Установки/использования в оборудовании не соответствующем принятым законам и стандартам.

5.8. Отклонение претензий

Данный документ является исключительной собственностью Eliwell Controls srl и не может воспроизводиться и распространяться без прямого и разрешения Eliwell Controls srl.

Хотя все возможные меры были приняты для обеспечения точности данного документа, тем не менее Eliwell Controls srl не несет никакой ответственности за ущерб, являющийся следствием его использования.

5.9. Утилизация

Приложение (или продукт) должно утилизироваться отдельно в соответствии с местными стандартами по утилизации отходов

6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ

Лицевая панель выполняет роль интерфейса пользователя и используется для выполнения всех операций, касающийся прибора.

6.1. Индикаторы драйвера V900/V910

На лицевой панели драйвера V900/V910 имеется 3 индикатора, которые отображают состояние клапана.

Еще 3 индикатора находятся под дверкой передней панели и они отображают процессы загрузки и выгрузки параметров и загрузки программы (см. раздел Мультифункциональный Ключ).

	Индикаторы	Цвет	Включен	Мигает		Выключен
***	Электронный ТРВ	Зеленый	Клапан открыт	Клапан закрыт (регулятор выключен) Рабочая точка достигнута		не использу- ется*
***	Разморозка	Желтый	Выполняется разморозка Клапан закрыт (регулятор выключен)	нет связи по последова-тель- ной шине		Разморозки нет
<u> </u>	Авария	Красный	не используется	Имеется Авария	нет связи по последова- тельной шине	Аварии нет

Таблица 17 ИНДИКАТОРЫ V900/V910

^{*} выключенное состояние индикатора электронного ТРВ означает отсутствие питания на драйвере

6.2. Клавиатура SKP 10

Сам драйвер V900/V910 дисплея не имеет. Используйте клавиатуру SKP 10 для управления прибором.

Отображаемые на клавиатуре SKP 10 величины могут иметь 4 цифры или 3 цифры со знаком.

Рисунок 14 Клавиатура SKP 10

	Кнопка	Короткое нажатие (нажать и отпустить)	Нажать и удерживать
	Вверх	 Быстрое изменение Рабочей точки перегрева* Увеличение значения / Переход на следующую Метку 	: НЕ ИСПОЛЬЗУЕТСЯ
	Вниз	 Быстрое изменение Рабочей точки перегрева* Уменьшение значения / Переход на предыдущую Метку 	: НЕ ИСПОЛЬЗУЕТСЯ
esc	esc	Выход без сохранения измененийВозврат на предыдущий уровень	mode: НЕ ИСПОЛЬЗУЕТСЯ
set	set	 Подтверждение значения / сохранить и выйти Переход на следующий уровень Доступ к меню Состояния установки (доступ к папкам, под-папкам, параметрам, значениям) 	Смотри раздел '6.3.1. Настройка основного дисплея' на стр. 27
esc _u set	esc+set	• Программирование (нажмите одновременно две кнопки Esc+set)	Смотри раздел '6.3.1. Настройка основного дисплея' на стр. 27
S _u ⊗	Вверх + Вниз	Ж Принятие Аварий	НЕ ИСПОЛЬЗУЕТСЯ

Таблица 18 Описание кнопок клавиатуры

6.2.1. Индикаторы клавиатуры SKP 10

Дисплей отображает значение выбранное для «Основного дисплея».

В случае аварии это значение отображается поочередно с кодом аварии (при наличии нескольких аварий в первую очередь отображается авария с меньшим индексом).

^{*} Функция кнопки может изменяться параметром dE32.

Индикаторы						
Вид	Цвет	Описание	Примечание			
ABC	Красный	Меню (АВС)				
Bar	Красный	Отображение давления (Бар)	Значение отображается в относительных Барах. Если давление в PSI, то символ Бар не горит.			
°C	Красный	Отображение температуры (°C)	Значение отображается в °С. Если температура в °F, то символ °С не горит.			
\triangle	Красный	Авария				

Таблица 19 Описание индикаторов

6.3. Доступ к папкам – структура меню

Доступ к папкам параметров организован в меню.

Доступ осуществляется кнопками лицевой панели клавиатуры как оисано в разделе '6.2. Клавиатура SKP 10' на стр. 26.

Доступ к каждому из меню описывается ниже (или в соответствующем указаном разделе).

Имеется 2 меню:

• меню «Состояний»: См. раздел «**6.3.2. Меню Состояний»** на стр. **'6.3.2. Меню Состояния' на стр. 29**;

• меню «Программирования». См. раздел **«6.3.3. Меню Программирования» ′6.3.3. Меню Программирования ′ на стр. 32**;

В меню «Программирования» имеется 3 папки/подменю:

Меню 'Параметры' (папка PAr):
 См. раздел «'10. ПАРАМЕТРЫ (PAr)' на стр. 69;

• Меню 'MFK' (папка FnC): См. раздел **«'12. UNICARD / MFK (папка FnC)' на стр. 100**;

Меню 'Папроль' (папка PASS):
 См. раздел «'10. ПАРАМЕТРЫ (PAr)' на стр. 69;

6.3.1. Настройка основного дисплея

Понятие «Основной» дисплей относится с исходной индикации дисплея пока кнопки интерфейса не используются.

Драйвер V900/V910 позволяет изменять настройку основного дисплея по Вашему желанию. Различная индикация выбирается из меню «disp» которое открывается после удержания кнопки [set] нажатой более 3 секунд.

Индикация основного дисплея может выбираться с перечня ниже:

Метка	Описание*	Отображаемое значение
drE0	Температура на выходе испарителя	Датчик на выходе испарителя (dAi3)
drE1	Температура насыщения хладогента	Датчик насыщения (dAl1)
drE2	Температура на выходе испарителя Резервный датчик	
drE3	Температура насыщения хладогента Резервный датчик	
drE4 Давление нагнетания HT(CO2) централи локальный (собственный датчик)		dAi2

V900 V910

Метка	Описание*	Отображаемое значение
drE5	Датчик регулятора Включен/Выключен	
drE6	Давление нагнетания HT (CO2) централи локальный или удаленный датчик	
drE7	Перегрев	Разность drE0 и drE1
drE8	Давление хладагента	Датчик насыщения, если используется токовый(сигнал 420мА) или ратиометрический (сигнал 05В)
drE9	Процент открытия клапана	Процент открытия клапана (0 100%)

Таблица 20 Г Исходный дисплей

- Аналоговые входы обозначены, как они исходно настроены при производстве.
- Отображение датчиков всегда дается в температуре **«6.3.2.2. Просмотр Входов и Выходов» на стр.'6.3.2.2. Просмотр Входов и Выходов' на стр. 31**.

Пошаговая инструкция приводится ниже.

Настройка основного дисплея

Для открытия меню [disp] и изменения настроек Основного дисплея нажмите кнопку «set» и удерживайте ее нажатой не менее 3 секунд.

Откроется меню с мигающей меткой выбранного на данный момент режима (в примере drE3).

Для изменения режима индикации используйте кнопки «Верх» и «Вниз» и подтвердите выбор нажатием «set» на нужной метке.

После выбора типа индикации (например, drE1), нажмите «set» для подтверждения. Прибор автоматически вернется в режим Основного дисплея.

^{*} значение по умолчанию.

^{**}при соответствующей настройке (конфигурации).

6.3.2. Меню Состояния

Меню состояний позволяет просматривать статус любого из ресурсов.

Так же это меню позволяет просматривать и изменять Рабочую точку.

Метка		Рабоча	я точка		Описание	Изменение
rE	drE1	drE2		drE7	Основной дисплей	Нет. Меню только для просмотра; для настроек см. «6.3.2.1. Задание рабочей точки» на стр. '6.3.2.1. Задание рабочей точки' на стр. 29
Ai	dAi1	dAi2	dAi3	dAi4	Аналоговые входы	Нет, только чтение
di	ddi1	ddi2			Цифровые входы	Нет, только чтение
dO	ddO1	ddO2			Цифровые выходы	Нет, только чтение
AL	Er01	Er02		Er15	Аварии	Нет, только чтение
SP	SP1	SP2		SP6	Рабочая точка	Да (кроме SP4)

Таблица 21 Меню Состояния

6.3.2.1. Задание рабочей точки

Рабочая точка	Описание	Задается параметром	Примечание
SP1	Рабочая точка минимального перегрева	dE32	Если dE30 = 1 рассматривается как желае- мый перегрев. Быстрое изменение кнопками «Верх»/«Вниз».
SP2	Смещение Рабочей точки перегрева	dE31	Если dE32 = 0 рассматривается только как Рабочая точка перегрева .
SP3	Рабочая точка МОР (максим. рабочего давления)	dE52	выражается в единицах измерения температуры.
SP4	Рабочая точка динамического перегрева	Только просмотр, не из- меняется. Рассчитывается динамически.	Значимо при dE30=1. Если dE30 = 0, то Рабочая точка задается через dE32.
SP5	Рабочая точка ПИД регулятора	dE79	в единицах измерения температуры/давления
SP6	Рабочая точка регулятора Вкл/вЫкл	dE74	в единицах измерения температуры/давления

Таблица 22 Задание рабочей точки

Пошаговая инструкция по выполнению операции представлена ниже.

Задание рабочей точки

Для открытия меню «Состояния» коротко нажмите «set». На дисплее появится метка rE.

Кнопками «Вверх» и «Вниз» пролистайте метки до появления метки SP.

Нажмите коротко «set» и появится первая из меток папки, а именно SP1.

Для просмотра значения SP1 вновь нажмите «set».

Если нужна другая метка пролистайте их кнопками «Вверх» и «Вниз» до желаемой. Для изменения значения используйте кнопки «Вверх» и «Вниз» для установления нужного значения и подтвердите его нажатием «set».

Нажмите «set» для подтверждения изменений. Индикация автоматически вернется к режиму Основного дисплея.

Быстрое программирование Рабочей точки SP1

Для быстрого изменения Рабочей точки коротко нажмите «Вверх» или «Вниз».

На дисплее появится текущее значение Рабочей точки.

Кнопками «Вверх» и «Вниз» установите нужное значение и подтвердите его нажатием «set».

Подтвердите изменения нажатием «set». Индикация автоматически вернется к Основному дисплею.

6.3.2.2. Просмотр Входов и Выходов

Пошаговая инструкция по просмотру значений аналоговых входов приведена ниже.

Аналогичная процедура используется и при просмотре других групп Входов и Выходов*.

Просмотр Входов и Выходов

Для открытия меню Состояния коротко нажмите «set».

На дисплее появится метка rE.

Для перехода на нужную метку пролистайте их кнопками «Вверх» и «Вниз» до желаемой – в примере метка Ai.

Нажмите «set» для открытия папки аналоговых входов и кнопками «Вверх» и «Вниз» перейдите на метку желаемого ресурса (датчика dAi1 в примере).

Теперь нажмите «set» вновь для просмотра значения датчика dAi1. Помните, что индикатор °C горит при отображении значения в градусах Цельсия. Для возврата к основному дисплею нажмите кнопку «esc».

* Для цифровых входов значения будут:

- 0 = вход пассивен (для цифрового входа это разомкнутый никуда не подключенный контакт);
- 1 = вход активен (для цифрового входа это замкнутый на общий сигнальный (gnd) контакт).

6.3.2.3. Просмотр Аварий (папка AL)

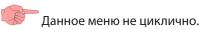
Пошаговая инструкция просмотра аварий приведена ниже.

Просмотр аварий

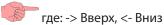
Для открытия меню Состояния коротко нажмите «set».

На дисплее появится метка rE.

Пролистайте метки кнопками «Вверх» и «Вниз» до желаемой – в данном случае метка AL



Нажмите «set» для открытия папки Аварий – появится метка первой из имеющихся аварий (если есть активные на данный момент).



В примере на дисплее появилась метка аварии Er01. Если аварий несколько то можно просмотреть все метки пролистывая их кнопками «Вверх» и «Вниз».

Например при наличии аварий Er01 и Er02, индикация дисплея будет: Er01 -> Er02 <- Er01

Нажмите «esc» для возврата к режиму Основного дисплея.

6.3.3. Меню Программирования

Меню Программирования		Метка		
Папка параметров	PAr			
Подпапки параметров	dL	dF	dE	Ui
Папка функций	FnC			
Папка пароля	PASS			

Таблица 23 Меню Программирования

6.3.3.1. Параметры (папка PAr)

Ниже представлена пошаговая инструкция по изменению параметров прибора.

Изменение параметра

Нажмите одновременно «esc» и «set» для входа в меню Программирования.

На дисплее появится метка первого из подменю Par (параметры). Нажмите «set» для просмотра меток подпапок.

Появится метка первой подпапки dL (папки конфигурации). Для просмотра параметров подпапки просто нажмите «set».

араметр покажет метку параметра dL00 (исходная заводская настройка). Нажмите кнопку «Вверх» для перехода к следующему параметру (в данном случае dL01) или кнопку «Вниз» для перехода к предыдущему параметру (в данном случае dL91), т.е. меню параметров циклическое.

dL00->dL01->dL02->...->dL91->dL00 dL91<-dL00<-dL01<-...<-dL90<-dL91

где: -> Вверх, <- Вниз


На метке параметра нажмите «set» для просмотра его значения (в примере на метке dL01)..

На дисплее появится значение параметра dL01, например, 2. Измените значение параметра на желаемое пользуясь кнопками «Вверх» и «Вниз».

Нажмите «set» для подтверждения изменения значения. ** Нажмите «esc» для выхода с этого уровня на предыдущий.

6.3.4. Мультифункциональный ключ (папка Par/FnC)

Смотри раздел «12. UNICARD/MFK (ПАПКА FNC)» '12. UNICARD / MFK (папка FnC)' на стр. 100

6.3.5. Ввод пароля (папка Par/PASS)

Для просмотра параметров, защищенных паролем откройте папку PASS (нажмите вместе [esc+set] из режима основного дисплея, перейдите на папку кнопками Вверх и Вниз и введите значение пароля (см. инструкцию ниже).

Ввод пароля

Нажмите одновременно «esc» и «set» для входа в меню Программирования.

На дисплее появится метка первого из подменю Par (параметры). Кнопками «Вверх» и «Вниз» перейдите на нужную папку с меткой PASS.

^{**}Нажатие «set» подтверждает новое значение параметра; нажатие «esc» позволяет вернуться на предыдущий уровень без сохранения измененного значения.

Для открытия папки PASS нажмите кнопку «set».

Кнопками «Верх» и «Вниз» установите значение пароля (уровня инсталлятора или производителя) и нажмите «set» для подтверждения и выхода.

Теперь Вам открыт доступ к изменению значений параметров (смотри раздел **10. ПАРАМЕТРЫ (PAr)' на стр. 69**).

7. НАСТРОЙКА ФИЗИЧЕСКИХ РЕСУРСОВ

7.1. Вступление

Перед любыми действиями убедитесь что:

- DIP переключателем или параметром был правильно выбран тип хладогента;
- Был правильно выбран тип клапана и он правильно настроен и находится в правильном положении;
- Были правильно сконфигурированы входы и выходы драйвера;
- Клапан был подключен к драйверу должным образом (см. раздел **«4. ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ» на стр. '4. ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ' на стр. 13**).

7.2. Аналоговые входы

Аналоговые входы обозначаются как dA1...dAi4 в общем количестве 4-х штук.

С помощью параметров физическим ресурсам (датчикам, цифровым входам, токовым/напряжения сигналам) задается тип реальных входов прибора.

Входы драйвера можно сконфигурировать по физическим их типам следующим образом.

Параметр	Описание	0	1	2	3*	4*	5*
dL00	Тип аналогового входа dAi1	Вход не сконфи- гурирован	NTC датчик	Pt1000 датчик	датчик 4-20 мА	ратиометрич. датчик 0-5В	датчик 0-10 V
dL01	Тип аналогового входа dAi2	Вход не сконфи- гурирован	NTC датчик	Pt1000 датчик	датчик 4-20 мА	ратиометрич. датчик 0-5В	датчик 0-10 V
dL02**	Тип аналогового входа dAi3	Вход не сконфи- гурирован	NTC датчик	Pt1000 датчик	-	-	-
dL03**	Тип аналогового входа dAi4	Вход не сконфи- гурирован	NTC датчик	Pt1000 датчик	-	-	-

Таблица 24 Настройка типов аналоговых входов

^{**} Только для V910.

Аналоговый вход	Параметр	Диапазон	Описание
dAi1	dL10	dL11999.9	Значение с датчика dAi1 при максимуме сигнала (конец шкалы)
dAi1	dL11	-14.5dL10	Значение с датчика dAi1 при минимуме сигнала (начало шкалы)
dAi2	dL12	dL13999.9	3начение с датчика dAi2 при максимуме сигнала (конец шкалы)
dAi2	dL13	-14.5dL12	Значение с датчика dAi2 при минимуме сигнала (начало шкалы)

Таблица 25 Задание шкалы сигнальных датчиков

^{*} Если dL00/dL01 = 3, 4 или 5 (т.е. датчик dAi1/dAi2 - сигнальный), то считываемое датчиком значение автоматически пересчитывается в значение температуры насыщения.

Значения, считываемые аналоговыми входами можно подстраивать (калибровать) параметрами dL20...dL23.

Параметр	Описание	Единица измерения	Диапазон
dL20	Смещение значения датчика dAi1	Бар/PSI -°C/°F	-12.012.0
dL21	Смещение значения датчика dAi2	Бар/PSI -°C/°F	-12.012.0
dL22**	Смещение значения датчика dAi3	°C/°F	-12.012.0
dL23**	Смещение значения датчика dAi4	°C/°F	-12.012.0

Таблица 26 Калибровка значений Аналоговых входов

Назначение аналоговых входов можно выполнить используя следующую таблицу.

Парам.	Функция	Диа- пазон	Описание значений	Исходная настройка для V900	Исходная настройка для V910
dL30	Назначение аналогового входа dAi1	06	0	5 = нагнетание	2 = насыщение
dL31	Назначение аналогового входа dAi2	06	 • 0= не используется • 1= выход испарителя (перегрев) • 2= насыщение • 3= резерв выхода испарителя (перегрев) 	0 = не используется	5 = нагнетание
dL32**	Назначение аналогового входа dAi3	06	 4= резерв насыщения 5= нагнетание 6 = регулятор Вкл/Выкл. (прямое управление открытием клапана) 	-	1 = выход испарителя (перегрев)
dL33**	Назначение аналогового входа dAi4	06	, , , , , , , , , , , , , , , , , , ,	-	0 = не используется

Таблица 27 Назначение Аналоговых входов

7.2.1. Прямое управление открытием клапана

Если выходы Ai1 и/или dAi2 физически сконфигурированы к сигнальные (4...20мA или 0...10В), то их можно настроить на прямое управление открытием клапана как показано в следующей таблице.

Парам.	Функция	Значение	Парам.	Функция	Значение
dL00	Тип аналогового входа dAi1	3-4-5	dL30	Назначение аналогового входа dAi1	5
dL01	Тип аналогового входа dAi2	3-4-5	dL31	Назначение аналогового входа dAi2	5

Таблица 28 Настройка прямого управления открытием клапана

В этом случае входной сигнал линейно пересчитывается в процент открытия клапана, вновь же с учетом параметров, определяющих его шкалу:

Парам.	Функция	Диапазон	Парам.	Функция	Диапазон
dL11	Значение с датчика dAi1 при максимуме сигнала (конец шкалы)	-14.5dL10	dL13	3начение с датчика dAi2 при максимуме сигнала (конец шкалы)	-14.5dL12
dL10	Значение с датчика dAi1 при минимуме сигнала (начало шкалы)	dL11999.9	dL12	3начение с датчика dAi2 при минимуме сигнала (начало шкалы)	dL13999.9

Таблица 29 Задание шкалы прямого управления открытием клапана

^{**} Только для V910.

^{* *}Только для V910.

V900 V910

Вам необходимо настроить:

dAi1

- dL10 в значение открытия клапана, которое соответствует максимальному сигналу с входа (10 В или 20 мА)
- dL11 в значение открытия клапана, которое соответствует минимальному сигналу с входа (10 В или 20 мА)

dAi2

- dL12 в значение открытия клапана, которое соответствует максимальному сигналу с входа (10 В или 20 мА)
- dL13 в значение открытия клапана, которое соответствует минимальному сигналу с входа (10 В или 20 мА)

Процент открытия клапана

- dAi1(dAi2) < -5.0: процент открытия клапана равен 0% с заблокированным регулятором (сброс повторяется пока значение <-5.0)
- -5.0< dAi1(dAi2) < 0.0: процент открытия клапана равен 0% с рабочим регулятором
- dAi1(dAi2) > 0.0, процент открытия клапана равен запросу с dAi1 (dAi2) пока он не превысит 100% (клапан остается на 100%). где dAi1(dAi2) это сигнал с аналогового входа Ai1(Ai2), пересчитанный в значение датчика с учетом параметров шкалы (dL10 и dL11 (dL12 и dL13)).

7.3. Цифровые входы

Имеется 2 свободных от напряжения цифровых входа, обозначаемых как ddi1...ddi2.

Назначение цифровых входов задается параметрами в соответствии с указаниями в таблице ниже:

Параметр	Описание	Значение	Описание	Примечание
dL40	Назначение цифрового входа ddi1	-4+4	 0 = вход не сконфигурирован ±1 = включение/выключение регулятора ±2 = режим разморозки 	При положительных значениях (+) вход активен при его замыкании, а при отрицательных (-) - при размыкании контакта Еслицифровыевходысконфигурированы
dL41	Назначение цифрового входа ddi2	-4+4	 ±2 = режим разморозки ±3 = авария ±4 = рабочий режим системы (только режимы 0 и 1) 	 (значения ≠0), то их команды имеют приоритет над командами по шине последовательного доступа Если dL40 = dL41, то приоритет имеет цифровой вход ddL1

Таблица 30 Назначение Цифровых входов

7.4. Цифровые выходы

Смотри раздел **«4. ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ» на стр.'4. ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ' на стр. 13** для получения информации о количестве и нагрузочной способности реле и выходов Открытый коллектор, а так же о их обозначении на приборе.

- Высоковольтный цифровой выход (реле) обозначается ddO1;
- Низковольтный цифровой выход (SELV) Открытый коллектор обозначается ddO2.

Параметр	Функция	Значение	Описание значений	Примечание
dL90	Назначение цифрового выхода ddO1 (реле)	-44	 0 = управляемый по шине выход ±1 = соленоидный клапан ±2 = выход аварий 	При положительных значениях (+) выход активизируется
dL91	Назначение цифрового выхода ddO2 (Открытый коллектор)	-44	 ±3 = регулятор Вкл/вЫкл ±4 = Удаленное управление (только при управлении по шине dF02 = 1) 	замыканием контактов, а при отрицательных (-) - размыканием контактов.

Таблица 31 Назначение цифровых выходов

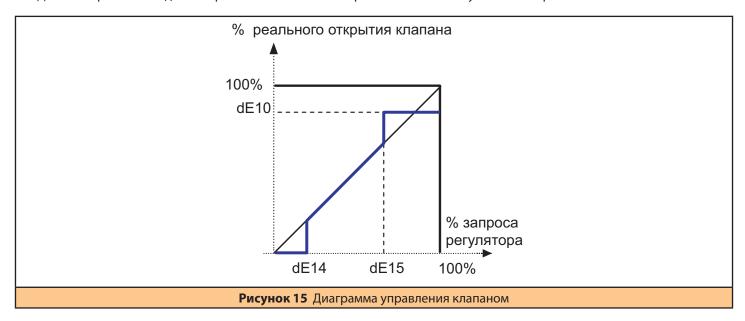
7.5. Таблица DIP переключателей

Под дверкой лицевой панели имеется набор из 6-ти DIP переключателей, которые используется для быстрого выбора типа хладогента, задания параметров связи и работы с мультифункцилнальным ключом MFK.

Эти действия могут выполняться и с удаленной клавиатуры SKP 10 путем задания соответствующих параметров папки dF. Для выбора типа хладогента параметром установите DIP переключатели 4, 5 и 6 в значение 7 и установите желаемое значение параметра dE20.

	Установленное Уда погоит		Положение DIP переключателей						
Функция	значение	Хладогент	1	2	3	4	5	6	
	0	R404A	-	-	вЫкл.	вЫкл.	вЫкл.	вЫкл.	
	1	R22	-	-	Вкл.	вЫкл.	вЫкл.	вЫкл.	
	2	R410A	-	-	вЫкл.	Вкл.	вЫкл.	вЫкл.	
	3	R134A	-	-	Вкл.	Вкл.	вЫкл.	вЫкл.	
	4	R744 (CO ₂)	-	-	вЫкл.	вЫкл.	Вкл.	вЫкл.	
	5	R407C	-	-	Вкл.	вЫкл.	Вкл.	вЫкл.	
Выбор хладагента	6	R427A	-	-	вЫкл.	Вкл.	Вкл.	вЫкл.	
Жидигенти	7	R507A	-	-	Вкл.	Вкл.	Вкл.	вЫкл.	
	8	R717	-	-	вЫкл.	вЫкл.	вЫкл.	Вкл.	
	9	R290	-	-	Вкл.	вЫкл.	вЫкл.	Вкл.	
	1014	НЕ ИСПОЛЬЗУЕТСЯ	-	-	-	-	-	-	
	15	Задается параметром dE20 R404A по умолчанию	-	-	Вкл.	Вкл.	Вкл.	Вкл.	
	Установленное значение	Действие	1	2	3	4	5	6	
Выгрузка/ Загрузка	1	Выгрузка из прибора в MFK	Вкл.	вЫкл.	-	-	-	-	
параметров в/из MFK	2	Загрузка в прибор из MFK	вЫкл.	Вкл.	-	-	-	-	

Таблица 32 Настройка DIP переключателей


8. РАБОТА

V900/V910 это контроллер управления электронным TPB с шаговым мотором, который регулирует значение минимального перегрева на выходе испарителя.

Смотри (Рис. Рисунок 15).

егулируемой величиной является % открытия электронного ТРВ, который конвертируется в % управляющего клапаном сигнала основываясь на следующих параметрах:

- dE10 Процент максимального открытия клапана максимальное открытие клапана в %, т.е полка при превышении запросом значения dE15;
- dE14 Процент минимального открытия клапана минимальное открытие клапана в % на участке пропорционального регулирования (если запрос ниже, то клана закрыт);
- dE15 Процент максимального рабочего открытия клапана максимальное рабочее открытие клапана в % на участке пропорционального регулирования.
- Если регулятор запрашивает выход равный или выше dE15, то реальный выходной сигнал будет равен dE10.
- Если dE15 > dE10, то функция скачка игнорируется, т.е. ступенька может быть ТОЛЬКО вверх.
- Если регулятор запрашивает выход равный или вышеdE14, то реальный выходной сигнал будет равен 0.
- Если регулятор поддерживает выход на уровне равном или выше dE10 дольше чем время, заданное параметром dE13, то выдается авария Максимального открытия клапана dA07 указывая на критическую ситуацию в системе, такую как недопустимая нагрузка, недоразмеренность установки и т.д. и т.п.
- Для блокирования выдачи аварии Максимального открытия клапан dA07 установите время dE13=0.

8.1. Настройка насыщения

V900/V910 рассчитывает реальный перегрев используя два аналоговых входа: вход перегрева dAI3 и вход насыщения dAI1. ПИД регулятор контроллера открывает клапан таким образом, чтобы перегрев достигал его Рабочей точки dE32. Алгоритм является динамическим: реальное значение перегрева может не достигнуть значения Рабочей точки или временно упасть ниже ее.

В случае появления жидкости на выходе испарителя Рабочая точка перегрева dE32 должна быть повышена.

* Пересчет dE32 выполняется только при его разрешении заданием параметра dE30=1.

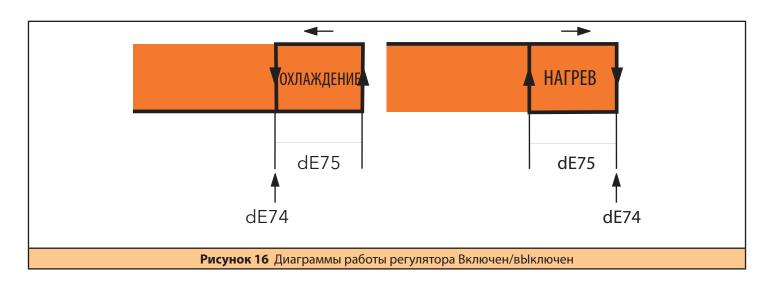
8.2. Выбор типа системы dE21

Параметры ПИД регулятора загружаются автоматически из памяти прибора при выборе типа системы заданием параметра dE21.

8.3. МОР (Максимальное Рабочее Давление)

Для регулирования МОР порог задается Рабочей точкой давления dE52.

При превышении этого порога на время, превышающее dE53, генерируется авария Максимального рабочего давления (MOP) dE53 (смотри раздел **«11. ABAPИИ» на стр. 43**).


- Регулятор максимального рабочего давления (МОР) активизируется параметром dE50.
- Регулятор МОР может быть заблокирован в течение времени dE51 от включения системы или от выхода из режима Разморозки. Эта задержка позволяет давлению упасть ниже заданного уровня при восстановлении работы системы.

8.4. Регулятор Включен/вЫключен

Разрешение

Использование регулятора разрешается заданием параметра dE78 ≠ 0

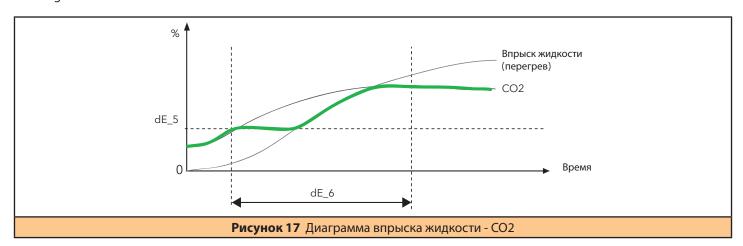
Параметр	Описание	Значения
		0 = нет - регулятор НЕ используется
dE78	Режим управления (нет/НАГРЕВ/ОХЛАЖДЕНИЕ)	1 = НАГРЕВ - цифровой регулятор Нагрева
		2 = ОХЛАЖДЕНИЕ - цифровой регулятор Охлаждения

Рабочая точка регулятора задается параметром **dE74,** а дифференциал или гистерезис параметром **dE75**. Параметры **dE76** и **dE77** задают ШИМ цикл регулятора на случай отказа датчика регулятора.

Параметр	Описание	dE76	dE77	Состояние регулятора Включен/вЫключен
dE74	Рабочая точка регулятора Вкл/вЫкл	0	0	постоянно вЫключен
dE75	Дифференциал регулятора Вкл/вЫкл	0	≠0	постоянно вЫключен
dE76	Время импульса выхода регулятора в цикле	≠0	0	постоянно Включен
dE77	Время паузы выхода регулятора в цикле	≠0	≠0	ШИМ цикл:
				Включен в течение dE76
				вЫключен в течение dE77

8.5. Регулятор давления установки на СО

Разрешение


Регулятор активизируется при задании параметра dE81 ≠ 0 Давление конденсации управляется ПИД регулятором:

Для каскадных систем (на CO₂) параметр dE98 должен быть установлен в значение 1 (разрешено) или 0.

Параметр	Описание	Значения
dE81	Разрешения использования ПИД регулятора давления конденсации	 0 = не используется 1 = локальный регулятор 2 = удаленный регулятор 3 = только ПИД для давления
dE98	Оптимизация управления для Каскадных систем	1 (разрешено)
dE_5	Минимальный процент перегрева - форсированный режим*	%
dE_6	Время выдачи минимального процента перегрева - форсированный режим*	секунды

^{*}Форсированный режим: На время **dE_6** минимальный процент открытия клапана в контуре CO2 равен **dE_5**. Смотри диаграмму ниже:

See diagram below:

If **dE81 = 3**, the valve is regulated only on the PID regulator value. The liquid injection is disabled in this case

Если **dE81 = 3**, то клапан управляется по расчетному значению ПИД регулятора. Впрыск жидкости в этом случае не регулируется.

ПИД регулятор

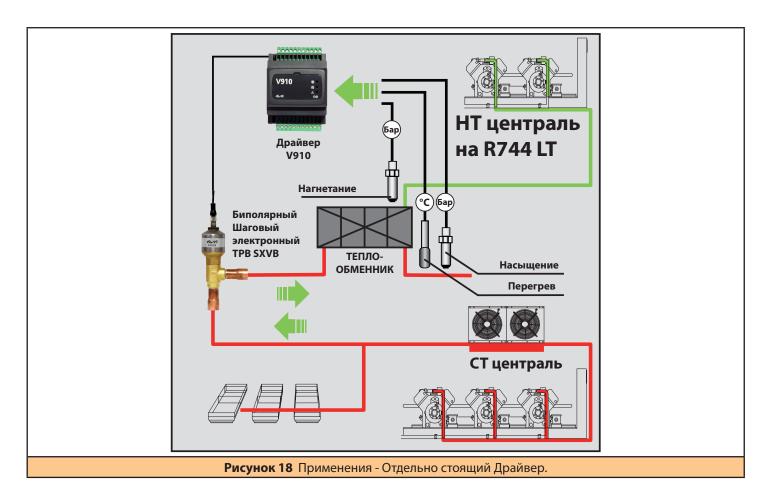
Параметр	Описание	Примечания
		Режим НАГРЕВА или ОХЛАЖДЕНИЯ выбирается в соответствии со
dE82	Пропорциональная зона ПИД регулятора	знаком значения
		(положительное = НАГРЕВ или отрицательное = ОХЛАЖДЕНИЕ)
dE83	Постоянная интегрирования ПИД регулятора	
dE84	Постоянная дифференцирования ПИД регулятора	

При отказе датчика (или недоступности удаленного значения), выход ПИД регулятора переводится на значение dE16.

9. ПРИМЕНЕНИЯ

Следующие применения возможно реализовать ТОЛЬКО с использование драйвера **V910**. Применение **Противодавление (поддержание постоянного давления) реализуется и на V900 и на V910.**

9.1. Каскадная система (исходная настройка)


Драйвер V910 управляет впрыском жидкости в теплообменник каскадной системы (т.е. подкритической системы на CO_2). В этом режиме количество подаваемого в теплообменник хладагента зависит от давления охлаждаемого газа (т.е. CO_2) на выходе теплообменника.

Драйвер может использоваться в одном из следующих режимов:

- отдельно стоящий Драйвер
- Драйвер, подключенный к порту RS485 EXP контроллера EWCM EO;
- Драйвер, управляемый контроллером Eliwell или другого производителя по шине Modbus

9.1.1. Отдельно стоящий Драйвер (исходная конфигурация)

В режиме отдельностоящего Драйвера он управляется через сконфигурированный для этих целей Цифровой вход.

Тип Управления Цифровой вход

4 in the contract of the contr						
Параметр	Описание	Значения				
dF02	Тип управления драйвером V910	0 (через Цифровой вход)				
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)				
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение				

Процент открытия клапана будет таким, что бы поддерживать давление конденсации НТ централи на желаемом уровне

(**dE79**) с исключением возможности, в любом случае, снижения значения перегрева на выходе теплообменника ниже минимального порога перегрева (**dE32**) для предотвращения появления жидкости на выходе.

Параметр	Описание	
dE32	Нижний порог перегрева	
dE79	Рабочая точка давления	

Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения	
dE81	Разрешить ПИД регулирование давления (конденсации)	1 (локальный регулятор)	
dE98	Оптимизация регулятора для каскадных систем	1 (разрешена)	

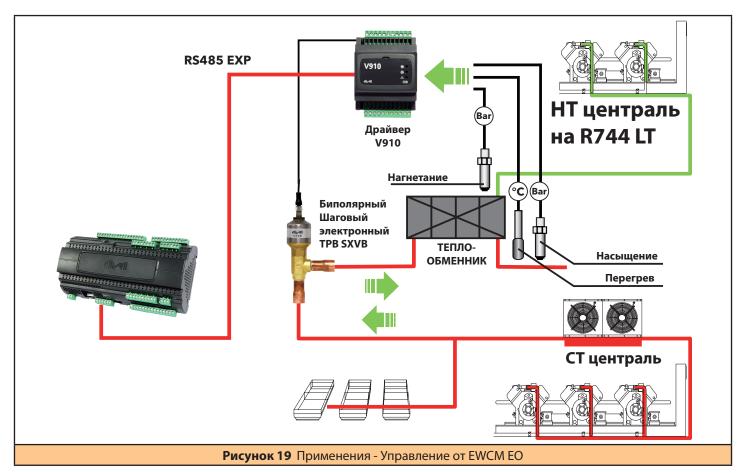
ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	для НАГРЕВА >0 для ОХЛАЖДЕНИЯ <0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Если регулятор будет использовать значение с датчика на выходе испарителя в **HT** контуре (**давление нагнетания**), а так же значения температуры (**перегрев**) и давления (**насыщение**) на выходе испарителя в **CT** контуре.

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420=420 мА)	насыщение
dL01	тип Аналогового входа dAi2 давление	3 (420=420 мА)	нагнетание
dL02	тип Аналогового входа dAi3 температура	1 (ntc=NTC)	перегрев
dL03	тип Аналогового входа dAi4	0 (diS=нет)	не используется
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	5 (датчик нагнетания)	нагнетание
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	0	не используется


9.1.2. Драйвер под управлением EWCM EO

V910 может подключаться к порту RS485 EXP контроллеров EWCM EO. В этом режиме Драйвер управляется напрямую командами от EWCM EO.

На практике EWCM EO управляет ОДНИМ Драйвером электронного TPB по шине **RS485 EXP**.

Ниже представлена схема подключения к EWCM EO Драйвера V910 для шагового электронного TPB

Адресация и Протокол

Протокол: Modbus RTU; Скорость: 18200 baud; Четность: 1

Параметр	Описание	Значение	Примечания
dF00	Выбор протокола порта СОМ0	= 1	0= Micronet (Televis) 1= Modbus RTU 2= НЕ ИСПОЛЬЗУЕТСЯ 3= НЕ ИСПОЛЬЗУЕТСЯ
dF30	Адрес прибора в сети Modbus	= 1	значения от 1 до 255
dF31	Скорость обмена данными по сети Modbus	= 4 (19200 baud)	0= 1200 baud 1= 2400 baud 2= 4800 baud 3= 9600 baud 4= 19200 baud 5= 38400 baud 6= 57600 baud 7= 115200 baud
dF32	Четность данных протокола Modbus	=1 (YET/EVEN)	0= HET; 1= ЧЕТ (четность) 2= HEЧЕТ (нечетность)

Тип управления EWCM EO

Параметр	Описание	Значение
dF02	Выбор типа управления Драйвером V910	3 (от EWCM EO)
dE20	Выбор типа хладагента (СТ централь)	Выберите соответствующее значение

Процент открытия клапана будет таким, что бы поддерживать давление конденсации НТ централи на желаемом уровне (**dE79)** с исключением возможности, в любом случае, снижения значения перегрева на выходе теплообменника ниже минимального порога перегрева (**dE32**) для предотвращения появления жидкости на выходе.

Параметр	Описание	
dE32	Минимальный порог перегрева	
dE79	Рабочая точка давления	

Регулятор использует ПИД режим со следующими параметрами:

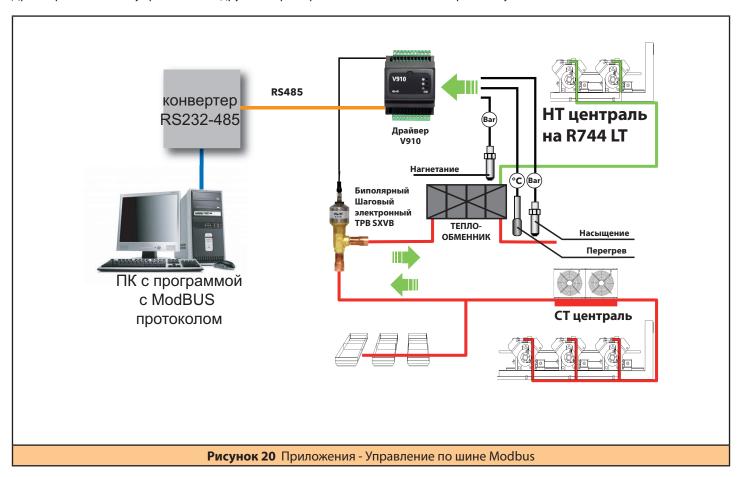
Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	1 (локальный регулятор)
dE98	Оптимизация регулятора для каскадных систем	1 (разрешена)

ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	для НАГРЕВА >0 для ОХЛАЖДЕНИЯ <0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)


Если регулятор будет использовать значение с датчика на выходе испарителя в **HT** контуре (**давление нагнетания**), а так же значения температуры (**перегрев**) и давления (**насыщение**) на выходе испарителя в **CT** контуре.

Конфигурирование датчиков

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	420 мА
dL01	тип Аналогового входа dAi2 давление	3 (420)	420 мА
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4	0 (diSτ)	не используется
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	5 (датчик нагнетания)	нагнетание
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	0	не используется

9.1.3. Управление через последовательный порт

Драйвер V910 может управляться и другими приборами или системами по протоколу Modbus.

Адресация и Протокол

Протокол: Modbus RTU; Скорость: 18200 baud; Четность: 1

Параметр	Описание	Значение	Примечания
			0= Micronet (Televis)
dF00	Выбор протокола порта СОМО	= 1	1= Modbus RTU
di 00	рыоор протокола порта солю	-	2= НЕ ИСПОЛЬЗУЕТСЯ
			3= НЕ ИСПОЛЬЗУЕТСЯ
dF30	Адрес прибора в сети Modbus	= 1	значения от 1 до 255
			0= 1200 baud
			1= 2400 baud
			2= 4800 baud
dF31	Cyanasti asuana ganun uun ga satu Madhus	= 4 (19200	3= 9600 baud
urs i	Скорость обмена данными по сети Modbus	baud)	4= 19200 baud
			5= 38400 baud
			6= 57600 baud
			7= 115200 baud
			0= HET;
dF32	Четность данных протокола Modbus	=1 (YET/EVEN)	1= ЧЕТ (четность)
			2= НЕЧЕТ (нечетность)

Ресурсы Modbus для контроля состояния Драйвера V910 и управления им

Переменная	Описание	Modbus адрес	Чтение/ Запись	Примечания
EEV_STTS	Состояние драйвера/клапана бит 0: 00 → (0 → вЫкл.; 1 → Вкл) бит 1: 01 → Авария Вкл бит 2: 10 → Разморозка Вкл бит 3: 11 → НЕ ИСПОЛЬЗУЕТСЯ bit 8: → ошибка датчика перегрева bit 9: → ошибка датчика насыщения bit 10: → ошибка датчика ПИД регулятора(СО2) bit 11: → Авария мотора	33158	Чтение	бит 1 : → Авария бит 2 : → Разморозка
drE9	процент открытия клапана	501	Чтение	0.1%
drE7	перегрев клапана	497	Чтение	
DischargePressure	Давление нагнетания HT централи, используемое V910	495	Чтение	0,1 PSI

Тип управления По шине MODBUS

Параметр	Описание	Значение
dF02	Выбор типа управления Драйвером V910	1 (по MODBUS шине)
dE20	Выбор типа хладагента (СТ централь)	Выберите соответствующее значение

Процент открытия клапана будет таким, что бы поддерживать давление конденсации НТ централи на желаемом уровне (**dE79)** с исключением возможности, в любом случае, снижения значения перегрева на выходе теплообменника ниже минимального порога перегрева (**dE32**) для предотвращения появления жидкости на выходе.

Параметр	Описание	
dE32	Нижний порог перегрева	
dE79	Рабочая точка давления	

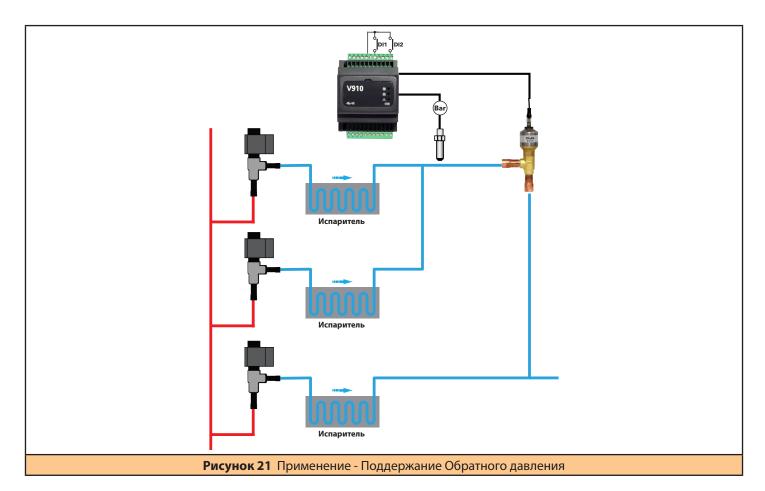
Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	1 (локальный регулятор)
dE98	Оптимизация регулятора для каскадных систем	1 (разрешена)

ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом


Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	для НАГРЕВА >0 для ОХЛАЖДЕНИЯ <0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Если регулятор будет использовать значение с датчика на выходе испарителя в **HT** контуре (**давление нагнетания**), а так же значения температуры (**перегрев**) и давления (**насыщение**) на выходе испарителя в **CT** контуре.

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	420 mA
dL01	тип Аналогового входа dAi2 давление	3 (420)	420 мА
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4	0 (diSτ)	не используется
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	5 (датчик нагнетания)	нагнетание
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	0	не используется

9.2. Обратное давление

Режим **Обратное Давление** может использоваться в установках, где требуется поддержание <u>постоянного давления</u> хладагента в контуре холодильной установки.

Тип Управления Цифровой вход

4.1besenswell		
Параметр	Описание	Значения
dF02	Тип управления драйвером V910	0 (через Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

Процент открытия клапана будет таким, что бы поддерживать давление **на выходе испарителя** на желаемом уровне (**dE79**).

Параметр	Описание	
dE79	Рабочая точка давления	

Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	3 (только регулятор давления)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)

ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	режим ОХЛАЖДЕНИЯ = -200
dE83	Постоянная интегрирования ПИД регулятора	2 секунды
dE84	Постоянная дифференцирования ПИД регулятора	1 секунда

Открытие клапана

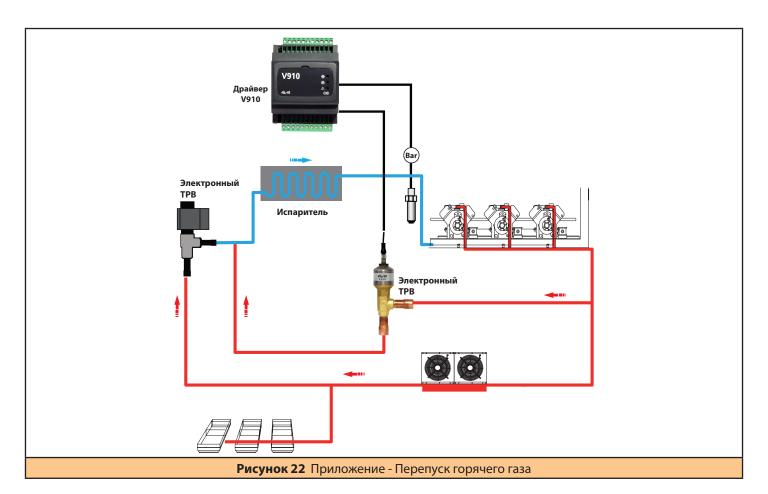
Параметр	Описание	Значения
dE14	Процент минимального рабочего открытия клапана	1%

Регулятор будет использовать значение с датчика давления, который располагается перед клапаном по направлению потока хладагента.

ВНИМАНИЕ: Рекомендуется настраивать в качестве единицы измерения регулятора PSI.

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	420 мА
dL01	тип Аналогового входа dAi2	0 (diS)	не используется
dL02	тип Аналогового входа dAi3	0 (diS)	не используется
dL03	тип Аналогового входа dAi4	0 (diS)	не используется
dL30	Назначение Аналогового входа dAi1	5 (датчик нагнетания)*	нагнетание*
dL31	Назначение Аналогового входа dAi2	0	не используется
dL32	Назначение Аналогового входа dAi3	0	не используется
dL33	Назначение Аналогового входа dAi4	0	не используется

^{*} датчик конфигурируется как датчик «**нагнетания**» хотя по сути устанавливается не там и несет другую функцию.


9.3. Перепуск Горячего газа

Регулятор может использоваться для контроля хладопроизводительности.

Если система работает с низкой термальной нагрузкой то производиться впрыск в испаритель горячего газа для повышения нагрузки.

Требуется наличие только датчика давления на всасывании компрессора в регулируемом контуре.

При падении давления регулятор увеличивает подачу горячего газа в испаритель.

Тип управления Цифровой вход

Параметр	Описание	Значение
dF02	Выбор типа управления Драйвером V910	0 (Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Вкл/вЫкл)

Процент открытия клапана будет соответствовать задаче поддержания давления **всасывания** на желаемом уровне (**dE79**).

Параметр	Описание	
dE79	Рабочая точка давления	

Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	3 (только регулятор давления)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)

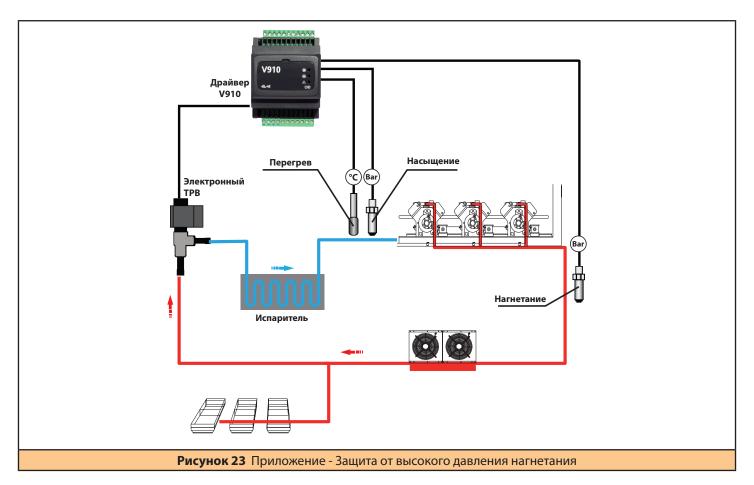
ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	режим ОХЛАЖДЕНИЯ <0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Регулятор использует давление, считываемое датчиком давления, который располагается перед компрессорами по направлению потока хладагента, т.е. на всасывании.

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1	3 (420)	420 мА
dL01	тип Аналогового входа dAi2	0 (diS)	
dL02	тип Аналогового входа dAi3	0 (diS)	
dL03	тип Аналогового входа dAi4	0 (diS)	
dL30	Назначение Аналогового входа dAi1	5 (датчик нагнетания)*	нагнетание*
dL31	Назначение Аналогового входа dAi2	0 (disabled)	не используется
dL32	Назначение Аналогового входа dAi3	0 (disabled)	не используется
dL33	Назначение Аналогового входа dAi4	0 (disabled)	не используется


^{*} датчик конфигурируется как датчик «**нагнетания**» хотя по сути устанавливается не там и несет другую функцию.

9.4. Защита от высокого нагнетания

Драйвер V910 способен модулировать впрыск жидкости, контролирую при этом давление или температуру нагнетания так, что бы предотвратить работу компрессора в опасной области.

Если регулятор определяет рост давления (или температуры) нагнетания, он ограничит поступление хладагента в испаритель и, таким образом, снизит нагрузку на компрессор.

9.4.1. Защита от высокого давления нагнетания

Тип Управления Цифровой вход

Параметр	Описание	Значения
dF02	Тип управления драйвером V910	0 (через Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

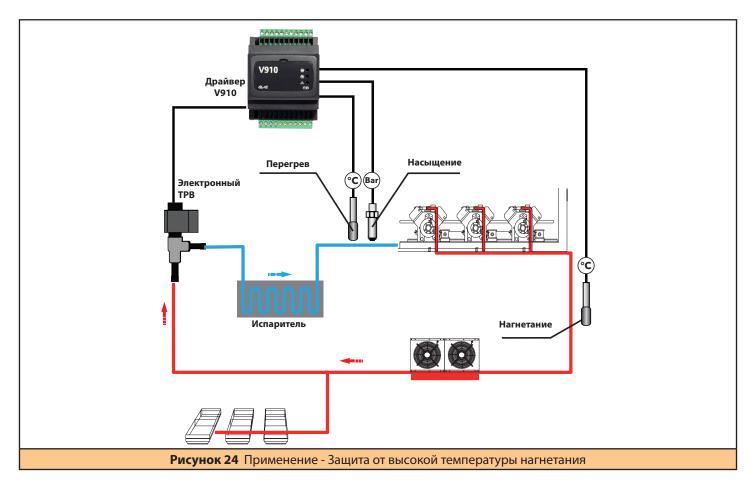
Процент открытия клапана будет таким, чтобы поддерживать перегрев на выходе испарителя на желаемом уровне (**dE32**); если давление нагнетания превысит заданный порог **dE79**, то регулятор начнет уменьшать процент открытия клапана.

Параметр	Описание	
dE32	Нижний порог перегрева	
dE79	Рабочая точка давления	

Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	1 (локальный регулятор)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)


ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	режим Нагрева > 0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Параметр	Описание	Значения	Примечания
dL00	Analogue input type dAi1 pressure	3 (420)	420 мА
dL01	Analogue input type dAi2 pressure	3 (420)	420 мА
dL02	Analogue input type dAi3 temperature	1 (ntc)	NTC
dL03	Analogue input type dAi4	0 (diS)	не используется
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	5 (датчик нагнетания)	нагнетание
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	0	не используется

9.4.2. Защита от высокой температуры нагнетания

Тип Управления Цифровой вход

Параметр	Описание	Значения
dF02	Тип управления драйвером V910	0 (через Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

Процент открытия клапана будет таким, чтобы поддерживать перегрев на выходе испарителя на желаемом уровне (**dE32**); если давление нагнетания превысит заданный порог **dE79**, то регулятор начнет уменьшать процент открытия клапана..

Параметр	Описание	
dE32	Нижний порог перегрева	
dE79	Рабочая точка давления	

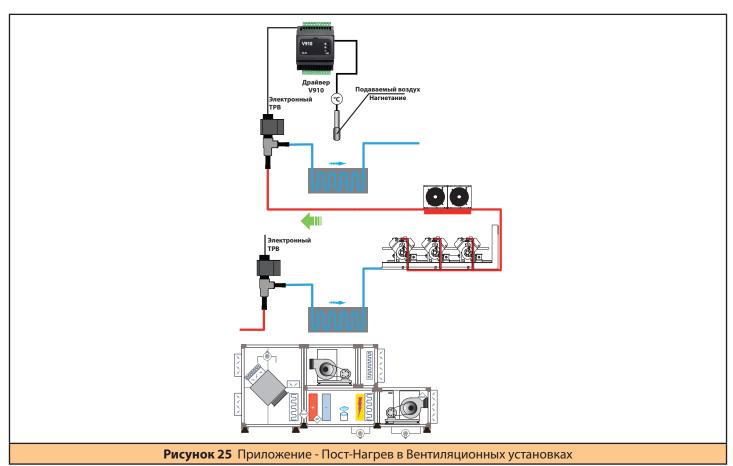
Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	1 (локальный регулятор)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)

ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом


Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	режим Нагрева > 0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Параметр	Описание	Значения	Примечания	
dL00	Analogue input type dAi1 pressure	3 (420)	420 mA	
dL01	Analogue input type dAi2 pressure	0 (dis)	не используется	
dL02	Analogue input type dAi3 temperature	1 (ntc)	NTC	
dL03	Analogue input type dAi4	1 (ntc)	NTC	
dL30	Назначение Аналогового входа dAi1	2 (saturation probe)	насыщение	
dL31	Назначение Аналогового входа dAi2	0	не используется	
dL32	Назначение Аналогового входа dAi3	1 (overheating probe)	перегрев	
dL33	Назначение Аналогового входа dAi4	5 (discharge)	нагнетание	

9.5. Пост-нагрев в Вентиляционных установках

Можно модулировать открытие клапана по значению температуры.

В вентиляционных установках (**AHU**) есть возможность использования тепла конденсатора для подогрева воздуха с целью приближения его температуры к желаемому уровню.

Тип Управления Цифровой вход

Параметр Описание		Значения	
dF02	Тип управления драйвером V910	0 (через Цифровой вход)	
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)	
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение	

Процент открытия клапана будет таким, что бы поддерживать давление конденсации на желаемом уровне (**dE79**).

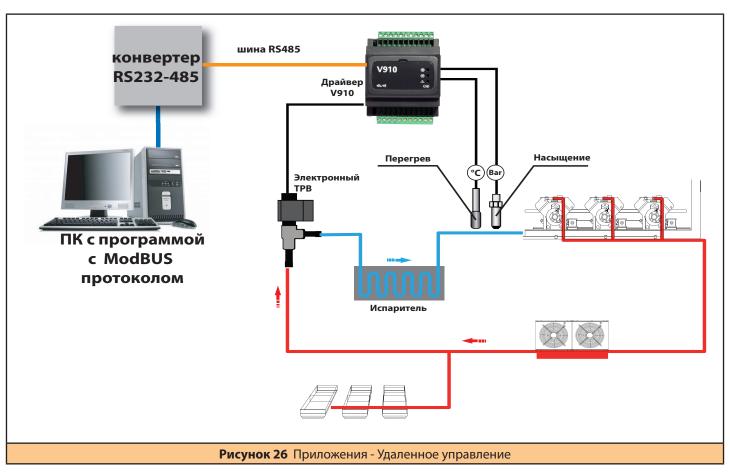
Параметр	Описание	
dE79	Рабочая точка давления	

Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	3 (только регулятор давления)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)

ПИД регулятор


Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание Значения	
dE82	Пропорциональная зона ПИД регулятора	HEAT mode > 0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1	0 (dis)	не используется
dL01	тип Аналогового входа dAi2	0 (dis)	не используется
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4	0 (dis)	не используется
dL30	Назначение Аналогового входа dAi1	0	не используется
dL31	Назначение Аналогового входа dAi2	0	не используется
dL32	Назначение Аналогового входа dAi3	5 (discharge)	нагнетание
dL33	Назначение Аналогового входа dAi4	0	не используется

9.6. Удаленный контроль производительности

Имеется возможность удаленно ограничить верхний порог производительности, выдаваемой ТРВ, ограничив процент его максимального открытия.

Ресурсы Modbus для контроля состояния Драйвера V910 и управления им

Переменная	Описание	Modbus Адрес	Чтение/ Запись	Примечания
FFVG	Состояние драйвера/клапана бит 0 : 00 → (0 → вЫкл.; 1 → Вкл)	22150		бит 1: → Авария
EEVStatus	бит 1 : 01 → Авария Вкл бит 2 : 10 → Разморозка Вкл бит 3 : 11 → НЕ ИСПОЛЬЗУЕТСЯ	33158	Чтение	бит 2 : → Разморозка
ExtEEVMode	удаленный запрос перевода в состояние: бит 0 : 00 → (0 → вЫкл.; 1 → Вкл) бит 2 : 10 → Разморозка Вкл	33160	Запись	бит 2 : → Разморозка
EEVOutPerc	Считываемый удаленно процент открытия клапана:	448	Чтение	0.1%
EEVSuperHeatingTemp	Температура перегрева	420	Чтение	
EEV_Remote_Threshold	Максимальный процент открытия клапана	599	Чтение и Запись	0.1%

Адресация и Протокол

Протокол: Modbus RTU; Скорость: 18200 baud; Четность: 1

Параметр	Описание	Значение	Примечания
dF00	Выбор % отаксламарын 600/юткрытия	= 1	0= Micronet (Televis) 1= Modbus RTU 2= НЕ ИСПОЛЬЗУЕТСЯ 3= НЕ ИСПОЛЬЗУЕТСЯ
dF30	Адрес прибора в сети Modbus	= 1	значения от 1 до 255
dF31	Скорость обмена данными по сети Modbus	= 4 (19200 baud)	0= 1200 baud 1= 2400 baud 2= 4800 baud 3= 9600 baud 4= 19200 baud 5= 38400 baud 6= 57600 baud 7= 115200 baud
dF32	Четность данных протокола Modbus	=1 (YET/EVEN)	0= НЕТ; 1= ЧЕТ (четность) 2= НЕЧЕТ (нечетность)

Тип Управления Цифровой вход

Параметр	Описание	Значения
dF02	Тип управления драйвером V910	0 (через Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

Процент открытия клапана будет таким, что бы поддерживать перегрев на выходе испарителя на желаемом уровне (**dE32**), но когда запрашиваемое значение превышает установленное по шине значение (**EEV_Remote_Threshold**) то реальное значение открытие клапана будет равно установленному по шине значению.

Регулятор использует ПИД режим со следующими параметрами:

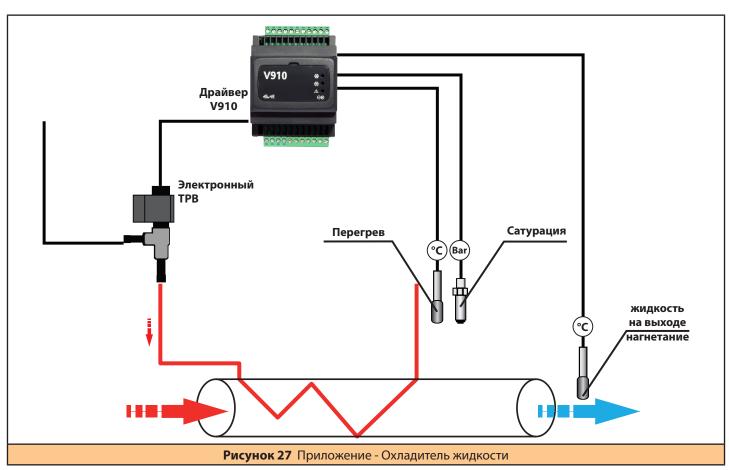
Enabling

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	2 (% по шине, удаленно)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)

ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом

Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	режим ОХЛАЖДЕНИЯ <0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)



Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	420 мА
dL01	тип Аналогового входа dAi2 давление	0	не используется
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4	0 (diS)	не используется
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	0	не используется
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	0	не используется

9.7. Охладитель жидкости

Драйвер V910 может регулировать подачу хладагента для поддержания температуры охлаждаемой жидкости (охладитель жидкости).

Тип Управления Цифровой вход

Параметр	Описание	Значения
dF02	Тип управления драйвером V910	0 (через Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

Процент открытия клапана будет таким, что бы поддерживать температуру жидкости на выходе на желаемом уровне (**dE79**) с поддержанием значения перегрева на выходе теплообменника не ниже минимального порога перегрева (**dE32**).

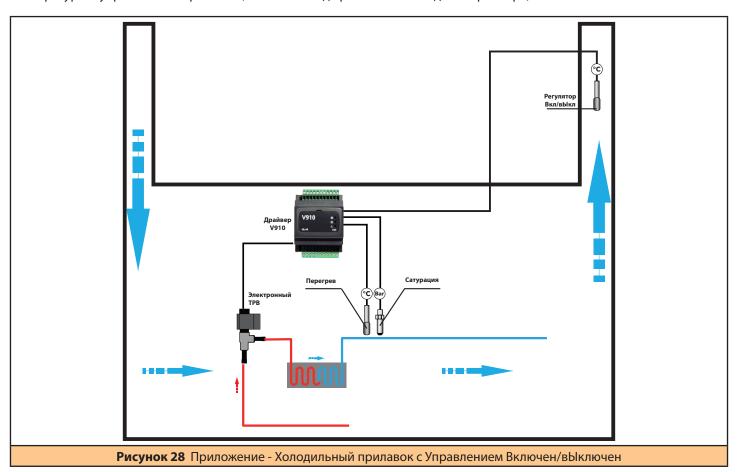
Регулятор использует ПИД режим со следующими параметрами:

Разрешение

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	1 (локальный регулятор)
dE98	Оптимизация регулятора для каскадных систем	0 (блокирована)

ПИД регулятор

Эти параметры должны устанавливаться квалифицированным персоналом


Параметр	Описание	Значения
dE82	Пропорциональная зона ПИД регулятора	режим ОХЛАЖДЕНИЯ <0
dE83	Постоянная интегрирования ПИД регулятора	задаваемое значение
dE84	Постоянная дифференцирования ПИД регулятора	0 (предлагается)

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	420 мА
dL01	тип Аналогового входа dAi2 давление	0	не используется
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4	1 (ntc)	NTC
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	0	не используется
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	5 (датчик нагнетания)	нагнетание

9.8. Холодильный прилавок с управлением Включен/вЫключен

В этом режиме регулятор может активизировать ии блокировать подачу жидкого хладагента в испаритель на базе температуры в управляемом прилавке (или по команде релейного выхода контроллера).

Тип управления Регулятор Вкл/вЫкл

Параметр	Описание	Значения
dF02	Тип управления драйвером V910	2 (Регулятор Вкл/вЫкл)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

Процент открытия клапана соответствует положению, обеспечивающему поддержанию перегрева на выходе испарителя не ниже порога **dE32.**

Разрешение

Для разрешения данного регулятора установите параметр **dE78** соответственно режиму Нагрева (>0) или Охлаждения (<0).

Рабочая точка этого регулятора задается параметром **dE74**, а дифференциал параметром **dE75**.

Параметры **dE76** и **dE77** задают работу регулятора в ШИМ цикле при отказе датчика.

Параметр	Описание	Значения
dE74	Рабочая точка регулятора Включен/вЫключен	Установите нужную температуру
dE75	Дифференциал регулятора Включен/вЫключен	задаваемое значение
dE76	Время импульса (работы) регулятора Включен/вЫключен в ШИМ цикле при отказе датчика регулятора	задаваемое значение
dE77	Время паузы (простоя) регулятора Включен/вЫключен в ШИМ цикле при отказе датчика регулятора	задаваемое значение
dE78	Режим регулятора (нет/Нагрев/Охлаждение)	2 (Охлаждение)

ПИД регулятор блокируется

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	0 (блокировано)
dE98	Оптимизация регулятора для каскадных систем	0 (disab блокирована)

Конфигурирование датчиков и входов

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	40 мА
dL01	тип Аналогового входа dAi2	0	не используется
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4 температура	1 (ntc)	NTC
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	0	не используется
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	6 (регулятор Вкл/вЫкл)	регулятор Вкл/вЫкл
dL40	Назначение Цифрового входа ddl1	0	не используется

9.9. Регулятор подачи жидкости с дополнительным термостатом

Регуляторы подачи жидкого хладагента и дополнительный термостат могут работать независимо.

Регулятор Включен/вЫключен драйвера V910 на практике может использоваться независимо от регулятора подачи жидкого хладагента.

Тип Управления Цифровой вход

Параметр	Описание	Значения
dF02	Тип управления драйвером V910	0 (через Цифровой вход)
dL40	Назначение Цифрового входа ddl1	1 (Включить/вЫключить)
dE20	Выбор типа газа (СТ установка)	Выберите соответствующее хладагенту значение

Процент открытия клапана поддерживает перегрев на выходе испарителя не ниже порога **dE32**.

Разрешение

Для разрешения данного регулятора установите параметр **dE78** соответственно режиму Нагрева (>0) или Охлаждения (<0).

Рабочая точка этого регулятора задается параметром **dE74**, а дифференциал параметром **dE75**.

Параметры **dE76** и **dE77** задают работу регулятора в ШИМ цикле при отказе датчика.

Параметр	Описание	Значения
dE74	Рабочая точка регулятора Включен/вЫключен	Установите нужную температуру
dE75	Дифференциал регулятора Включен/выключен	задаваемое значение
dE76	Время импульса (работы) регулятора Включен/выключен в ШИМ цикле при отказе датчика регулятора	задаваемое значение
dE77	Время паузы (простоя) регулятора Включен/выключен в ШИМ цикле при отказе датчика регулятора	задаваемое значение
dE78	Режим регулятора (нет/Нагрев/Охлаждение)	1=НАГРЕВ 2=ОХЛАЖДЕНИЕ

ПИД регулятор блокируется

Параметр	Описание	Значения
dE81	Разрешить ПИД регулирование давления (конденсации)	0 (блокировано)
dE98	Оптимизация регулятора для каскадных систем	0 (disab блокирована)

Конфигурирование датчиков

Параметр	Описание	Значения	Примечания
dL00	тип Аналогового входа dAi1 давление	3 (420)	40 мА
dL01	тип Аналогового входа dAi2	0	не используется
dL02	тип Аналогового входа dAi3 температура	1 (ntc)	NTC
dL03	тип Аналогового входа dAi4 температура	1 (ntc)	NTC
dL30	Назначение Аналогового входа dAi1	2 (датчик насыщения)	насыщение
dL31	Назначение Аналогового входа dAi2	0	не используется
dL32	Назначение Аналогового входа dAi3	1 (датчик перегрева)	перегрев
dL33	Назначение Аналогового входа dAi4	6 (регулятор Вкл/вЫкл)	регулятор Вкл/вЫкл

Назначение Цифровых выходов

Параметр	Описание	Значения	Примечания			
dL90	Назначение Цифрового выхода ddO1	3 (регулятор Вкл/вЫкл)				
dL91	Назначение Цифрового выхода ddO2 (Открытый Коллектор).	3 (регулятор Вкл/вЫкл)				

10. ПАРАМЕТРЫ (PAr)

Параметры используются для настройки всех аспектов работы V910.

Параметры можно изменять при помощи:

- Мультифункционального ключа (MFK) или Карточки копирования UNICARD;
- Интерфейса удаленной клавиатуры SKP 10;
- Персонального компьютера с программой Device Manager.

Ниже приводится детальное описание каждого из параметров, которые группируются по категориям (папкам).

Каждая папка обозначается двух символьной меткой (например, dF, UI, и т.п.).

Метка папки	Пояснение значения метки	Параметры для			
dL	d river L ocator configuration	настройки Входов и Выходов			
dF	d river protocol con f iguration	настройки Протокола связи			
dE	d river valv e configuration	настройки Регулятора клапана			
Ui	U ser i nterface	настройки Интерфейса пользователя			

Таблица 33 Параметры (PAr)

Если не указывается иное, то параметры видимы и изменяемы, пока настройки визуализации таблицы параметров не изменены по усмотрению пользователя по шине последовательного доступа (например, с ПК).

Можно настраивать визуализацию как отдельных параметров так и папок в целом (смотри таблицу Папок). При изменении визуализации папки аналогичным образом изменяется визуализация всех ее параметров..

Уровни визуализации

Можно установить один из четырех допустимых уровней визуализации для любого параметра или папки. Настройку визуализации можно произвести только по шине с помощью программы (DeviceManager или другой) или с помощью карточки программирования параметров.

Имеются следующие уровни визуализации:

- Значение 3 = параметр или папка Видимы Всегда.
- Значение 2 = уровень Производителя; Эти параметры видимы ТОЛЬКО после ввода пароля Производителя (значение задается параметром Ui28), при этом видимыми будут и параметры, которые Видимы Всегда, и параметры уровня Инсталлятора и параметры уровня Производителя.
- Значение 1 = уровень Инсталлятора; Эти параметры становятся видимы после ввода пароля Инсталлятора (значение задается параметром Ui27), при этом видимыми будут и параметры, которые Видимы Всегда, и параметры уровня Инсталлятора.
- Значение 0 = параметр или папка НЕ видимы в меню прибора (доступ только по шине).

Параметры и папки с визуализацией 1 и 2 (т.е. защищенные паролями) становятся видимыми после ввода пароля соответствующего и уровня (процедура ввода пароля описана ниже).

Параметры и папки с визуализацией = 3 видимы ВСЕГДА и для их просмотра и редактирования ввода пароля не требуется.

10.1. Таблицы Параметры, Визуализация Папок и Клиентская

Приводимые ниже таблицы включают всю информацию, требуемую для чтения, записи и декодирования всех ресурсов прибора.

Это следующие таблицы:

- Таблица Параметры включает все параметры настройки прибора, которые хранятся в энергонезависимой памяти драйвера, а так же информацию о визуализации этих параметров;
- Визуализация папок включает в себя исходную визуализацию всех папок параметров;
- Клиентская таблица включает все состояния входов и выходов прибора и аварийных ресурсов прибора, которые хранятся в оперативной памяти драйвера.

10.1.1. Описание колонок

ПАПКА: Отображает Метку папки, которая включает описываемый параметр.

<u>МЕТКА</u>: Метка, которая соответствует описываемому параметру.

АДРЕС ЗНАЧЕНИЯ: Отображает адрес регистра MODBUS, который включает значение читаемого или записываемого ресурса.

Цифра после запятой указывает на позицию наименее значимого (младшего) бита значения в регистре (если не указывается, то принимается равным 0). Такая информация указывается так же в случае, когда регистр включает несколько информационных единиц (значений) и необходимо указать биты реально представляющие данные (размер соответствующих данных указывается в колонке PA3MEP ДАННЫХ и должен учитываться при работе с ними). Принимая во внимание, что Modbus регистр имеет размер в одно СЛОВО (16 бит), приходим к выводу, что значение после запятой может принимать значения от 0 (младший бит –LSb–) до 15 (старший бит –MSb–).

Примеры (в двоичной форме младший бит является крайним справа):

АДРЕС ЗНАЧЕНИЯ	РАЗМЕР ДАННЫХ	Значение	Содерж	кание регистра
8806	WORD / СЛОВО	1350	1350	0000010101000110)
8806	Byte / Байт	70	1350	(00000101 01000110)
8806.8	Byte / Байт	5	1350	(00000101 01000110)
8806.14	1 bit / 1 бит	0	1350	(0 0 00010101000110)
8806.7	4 bits / 4 бита	10	1350	(00000 1010 1000110)

Таблица 34 Пример данных и их регистров

Важно: когда регистр содержит несколько данных, то для изменения одного из них выполняйте действия в следующей последовательности:

- 1. Прочтите содержимое регистра целиком;
- 2. Измените только биты, относящиеся к изменяемому значению;
- 3. Запишите регистр в прибор целиком.

<u>АДРЕС ВИЗУАЛИЗ.ации</u>: Аналогично АДРЕСУ ЗНАЧЕН.ия, но теперь MODBUS регистр содержит информацию о значении визуализации соответствующего параметра.

По умолчанию все параметры визуализации имеют:

Размер данных
 2 bit / 2 бита

Диапазон значений 0...3
 Визуализацию* 3
 Единицу измерения число

Примеры

В двоичной форме младший бит является крайним справа.

АДРЕС ВИЗУАЛ.	РАЗМЕР ВИЗУАЛ.	Значение	Содержание регистра			
49482	2 bit / 2 бита	0	120	(0000000011110 00)		
49482.2	2 bit / 2 бита	2	120	(00000000111 10 00)		
49482.4	2 bit / 2 бита	3	120	(0000000001 11 1000)		
49482.6 2 bit / 2 бита		1	120	(00000000 01 111000)		

Таблица 35 Пример исходных значений визуализации

АДРЕС ВИЗУАЛ.	РАЗМЕР ВИЗУАЛ.	Значение	Содерж	кание регистра
49484	2 bit / 2 бита	0	72	(0000000001 00 1000)

Таблица 36 Пример измененной визуализации

^{*} Смотри раздел '6.3.5. Ввод пароля (папка Par/PASS)' на стр. 34'6.3.2.2. Просмотр Входов и Выходов' на стр. 31

ПЕРЕЗАПУСК (Y/N=ДА/НЕТ)

Указывает на необходимость выключения и повторного включения (перезапуска) прибора после изменения данного параметра;

- Y = ДА, прибор НУЖНО выключить и включить снова после изменения параметра;
- N = НЕТ, прибор НЕ НУЖНО выключать и включать снова после изменения параметра.

Пример

ВСЕ параметры конфигурации (папка dL) имеют значение Y = ДА, т.е. ПОСЛЕ ИХ ИЗМЕНЕНИЯ ПРИБОР НЕОБХОДИМО ПЕРЕЗАПУСТИТЬ, чтобы внесенные изменения вступили в силу.

Ч/3 (Чтение/Запись)

Указывает на доступность ресурсов для Чтения м Записи, только для Чтения или только для Записи:

- Ч (Чтение): ресурс только для Чтения (R);
- 3(Запись)): ресурс только для Записи (W);
- Ч/3(Чтение и Запись): ресурс для Чтения и Записи (RW).

РАЗМЕР ЗНАЧ. (Размер значения)

Отображает размер данных в битах (bits).

- WORD/СЛОВО = 16 bits/16 бит
- Byte/Бай = 8 bits/8 бит
- "n" bit/"n" бит = n-е число бит (bits), где т может быть от 1 до 16.

КОНВЕР. (Конверсация)

Если в поле стоит "Y"= "ДА", то читаемое в регистре значение требует конверсации, поскольку представляет собой значение со знаком. В остальных случаях значения положительны или равны нулю.

Для выполнения конверсации следуйте инструкции:

- если значение регистра от 0 до 32,767, то значение сохраняет свое значение (ноль и положительные значения);
- если значение регистра от 32,768 до 65,535, то из значения регистра необходимо вычесть число 65,536 (отрицательные значения).

ДИАПАЗОН

Отображает интервал значений, который может быть присвоен параметру. Он может быть увязан с параметрами прибора и использовать метки этих параметров.

Если реальное значение параметра находится вне диапазона, указанного для этого параметра (например, потому что были изменены параметры, определяющие эти пределы диапазона), то вместо этого значения параметра будет использовано значение соответствующего (нарушенного) предела диапазона.

ИСХОДНОЕ

Отображает устанавливаемое на заводе исходное значение параметра (для стандартных моделей)

Модель прибора V900/V910 485 используется как основная в руководстве. Различия отображены в таблице.

МНОЖИТ. (Степень 10 для Множителя)

Если равен -1, что считанное с регистра значение делится на 10 (умножается на 0,1) для преобразования его к виду, соответствующему колонкам ДИАПАЗОН и ИСХОДНОЕ, а так же Ед.Изм (Единица Измерения).

Пример.

Параметр dL01 = 50.0. В колонке МНОЖ = -1:

- отображаемое на дисплее и читаемое программой DeviceManagerзначение равно 50.0;
- Считываемое из регистра значение равно 500 (умножаем)-> 500*0.1 = 50.0.

Ед.Изм. (Единица Измерения).

Единица измерения значений, полученных из значения регистра после их Конверсации (КОНВ.) и Умножения (МНОЖ.).

Единицы измерения давления относятся к ОТНОСИТЕЛЬНОМУ давлению.

V900 V910

10.1.2. Таблица Параметров и их Визуализации

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dF	dF00	49158	БАЙТ			49434.6	HET	Ч/3	Выбор протокола порта COM0 • 0 = Eliwell; • 1 = Modbus; • 23 = НЕ ИСПОЛЬЗУЕТСЯ	0 3	0	0	число
dF	dF02	49200	БАЙТ			49435.2	HET	4/3	Выбор типа управления Драйвером (Клапаном) • 0 = Цифровой вход • 1 = по шине RS485 • 2 = регулятором Включен/вЫключен • 3 = от EWCM EO Помните. Если dL40 и/или dL41 ≠ 0, то управление поступает по шине. Если Цифровые входы DI1, DI2 сконфигурированы, то они ВСЕГДА имеют приоритет над сетевыми командами.	0 3	0	0	число
dF	dF20	49172	БАЙТ			49437	HET	Ч/3	Адреса прибора для протокола Eliwell dF20= номер прибора в семействе адреса (значения с 0 по 14) dF21 = семейство адреса (значения с 0 по 14) Два значения dF20 и dF21 задают сетевой адрес прибора в следующем формате "FF.DD" (где FF=dF21 и DD=dF20).	0 14	0	0	число
dF	dF21	49173	БАЙТ			49437.2	HET	4/3	Семейство адреса для протокола Eliwell Смотри dF20	0 14	0	0	число
dF	dF30	49175	БАЙТ			49437.6	ДА	4/3	Адреса прибора для протокола Modbus	0 255	1	1	число

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	Ч/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dF	dF31	49176	БАЙТ			49438	ДА	Ч/3	Скорость данных протокола Modbus • 0=1200 бод • 1=2400 бод • 2=4800 бод • 3=9600 бод • 4=19200 бод • 5=38400 бод (максимально допустимая скорость для программы DeviceManager) • 6=57600 бод • 7=115200 бод	0 7	4	4	число
dF	dF32	49177	БАЙТ			49438.2	ДА	Ч/3	Четность данных протокола Modbus • 0= HET • 1= ЧЕТ (паритет) • 2= НЕЧЕТ (отсутствие паритета)	0 2	1	1	число
dF	dF42	16424	БАЙТ			49439		4/3	Номер кода Таблицы параметров Tab	0 65535	2	2	число
dF	dF43							Ч	Модель программы	0 999	457	457	число
dF	dF44							Ч	Версия программв	0 999	0	0	число
dF	dF60	16426	СЛОВО			49440	HET	Ч/3	Клиентский код 1	0 999	0	0	число
dF	dF61	16428	СЛОВО			49440	HET	Ч/3	Клиентский код 2	0 999	0	0	число
dL	dL00	50894	БАЙТ			49429.2	ДА	Ч/3	 Тип аналогового входа dAl1 • 0= Вход не сконфигурирован • 1= NTС датчик температуры • 2= Pt1000 датчик температуры • 3= токовый сигнал 420mA • 4= ратиометрический датчик 05В • 5= сигнал напряжения 010В 	0 5	3	3	число
dL	dL01	50895	БАЙТ			49429.4	ДА	Ч/3	Тип аналогового входа dAi2 Аналогично dL00	0 5	3	3	число
dL	dL02	50896	БАЙТ			49429.6	ДА	Ч/3	Тип аналогового входа dAi3 • 0 = 0= Вход не сконфигурирован • 1= NTC датчик температуры • 2= Рt1000 датчик температуры	0 2		1	число
dL	dL03	50897	БАЙТ			49430	ДА	Ч/3	Тип аналогового входа dAi4 Аналогично dL02	0 2		0	число

Руководство по Установке и Использованию

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	Ч/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dL	dL08	50923	БАЙТ			49430.2	ДА	Ч/3	Единица измерения температуры 0=°C; 1=°F	0 1	0	0	флаг
dL	dL09	50924	БАЙТ			49430.4	HET	Ч/3	Единица измерения давления 0 = Бар 1 = PSI	0 1	0	0	флаг
dL	dL10	18130	СЛОВО	ДА	-1	49430.6	HET	Ч/3	Значение с входа dAl1 при максимуме шкалы	dL11 9999	70	70	Бар/PSI
dL	dL11	18140	СЛОВО	ДА	-1	49431	HET	Ч/3	Значение с входа dAl1 при минимуме шкалы	-145 dL10	-5	-5	Бар/PSI
dL	dL12	18132	СЛОВО	ДА	-1	49431.2	HET	Ч/3	Значение с входа dAl2 при максимуме шкалы	dL13 9999	500	500	Бар/PSI
dL	dL13	18142	СЛОВО	ДА	-1	49431.4	HET	Ч/3	Значение с входа dAI2 при минимуме шкалы	-145 dL12	0	0	Бар/PSI
dL	dL20	50918	БАЙТ	ДА	-1	49431.6	ДА	4/3	Смещение (калибровка) аналогового входа dAi1	-120 120	0	0	Бар/PSI °C/°F
dL	dL21	50919	БАЙТ	ДА	-1	49432	ДА	4/3	Смещение (калибровка) аналогового входа dAi2	-120 120	0	0	Бар/PSI °C/°F
dL	dL22	50920	БАЙТ	ДА	-1	49432.2	ДА	Ч/3	Смещение (калибровка) аналогового входа dAi3	-120 120		0	°C/°F
dL	dL23	50921	БАЙТ	ДА	-1	49432.4	ДА	Ч/3	Смещение (калибровка) аналогового входа dAi4	-120 120		0	°C/°F
dL	dL30	50934	БАЙТ			49432.6	HET	Ч/3	Назначение аналогового входа dAi1 • 0= не сконфигурирован • 1= выход испарителя (перегрев) • 2= насыщение • 3= резерв выхода испарителя (перегрев) • 4= резерв насыщения • 5 = нагнетание • 6 = вход Регулятора Включен/Выключен	0 6	2	2	число
dL	dL31	50935	БАЙТ			49433	HET	Ч/3	Назначение аналогового входа dAi2 Аналогично dL30	0 6	5	5	число
dL	dL32	50936	БАЙТ			49433.2	HET	Ч/3	Назначение аналогового входа dAi3 Аналогично dL30	0 6		1	число
dL	dL33	50937	БАЙТ			49433.4	HET	Ч/3	Назначение аналогового входа dAi4 Аналогично dL33	0 6		0	число

Страница. 74 / 117

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	PA3MEP 3HA4.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dL	dL40	50926	БАЙТ	ДА		49433.6	ДА	4/3	 Назначение цифрового входа ddi1 • 0 = вход не сконфигурирован • ±1 = включение/выключение регулятора • ±2 = режим разморозки • ±3 = авария • ±4 = рабочий режим системы (только режимы 0 / 1) 	-4 4	1	1	число
dL	dL41	50927	БАЙТ	ДА		49434	ДА	Ч/3	Назначение цифрового входа ddi2 Аналогично dL40	-4 4	0	0	число
dL	dL90	50940	БАЙТ	ДА		49434.2	ДА	Ч/3	 Назначение цифрового выхода ddO1 (реле) • 0 = выход управляется по шине послед. доступа • ±1 = управление соленоидным клапаном • ±2 = выход аварий • ±3 = выход Регулятора Включен/Выключен • ±4 = удаленно управляемый выход 	-4 4	1	1	число
dL	dL91	50941	БАЙТ	ДА		49434.4	ДА	4/3	Назначение цифрового выхода ddO2 (Открытый коллектор) Аналогично dL90	-4 4	0	0	число

Руководство по Установке и Использованию Страница. 75 / 117

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dE	dE00	49201	БАЙТ			49442	ДА	Ч/3	Модель Клапана Смотри раздел «10.1.3. Параметры настройки клапана» на стр. 75′ • 0= пользовательский (см «10.1.4. Параметры настройки клапанов dE01dE09, dE80 при dE00 = 0» на стр. 75) Для значений с 1 по 15 смотри «10.1.5. Параметры настройки клапанов dE01dE09, dE80 при dE00 ≠0» на стр. 75 • 1= DANFOSS ETS50 • 2= DANFOSS ETS100 • 3= ALCO EX4 EX5 EX6 • 4 = 3HAЧЕНИЕ НЕ ИСПОЛЬЗУЕТСЯ • 5= ALCO EX7 • 6= ALCO EX8 • 7= 3HAЧЕНИЕ НЕ ИСПОЛЬЗУЕТСЯ • 8= SPORLAN SEI-30 • 10= SPORLAN SEI-50 • 11= 3HAЧЕНИЕ НЕ ИСПОЛЬЗУЕТСЯ • 12= SPORLAN SER(I) G, J, K, B, C, D • 13= ALCO EXM246 • 14= SANHUA DPF(Q)/DPF(T01) • 15= ELIWELL SXVB (производства CASTEL)	O 15	15	15	число
	(Описание	параметр						о.1.4. Параметры настройки клапанов dE01dE09, dE80 п	ри dE00 = 0» н	а стр.75	5	
				Пар	аметрь	i aev i de	U9/QE8U B	идим	ы и могут задаваться с клавиатуры ТОЛЬКО при dE00=0.				
dE	dE10	49208	БАЙТ			49442.2	HET	Ч/3	Процент максимального открытия клапана Задает процент максимального открытия клапана, т.е. предел управления в процентах. 0 означает, что клапан полностью закрыт	0 100	100	100	%
dE	dE11	49209	БАЙТ			49442.4	HET	Ч/3	Процент открытия клапана после перезапуска Значение рассчитывается автоматически, но может задаваться этим параметром для первого включения	0 100	0	0	%

Страница. 76 / 117

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dE	dE12	49210	БАЙТ			49442.6	HET	Ч/3	Процент открытия клапана после Разморозки Значение рассчитывается автоматически, но может задаваться этим параметром для первого раза. Если установлено в 0, то используется значение dE11	0 100		0	%
dE	dE13	49211	БАЙТ			49443	HET	4/3	Время с максимальным открытием до аварии Если клапан открыт больше чем на dE10 % дольше чем dE13 то выдается Авария максимального открытия dA07 (смотри раздел «Аварии») если dE13=0, то авария НЕ выдается	0 255	60	60	мин
dE	dE14	49212	БАЙТ			49443.2	HET	Ч/3	Минимальный процент открытия клапана Если запрос регулятора меньше или равен dE14, то реаль- ный выход будет равен нулю (0)	0 dE15	0	0	%
dE	dE15	49213	БАЙТ			49443.4	HET	Ч/3	Максимальный процент открытия клапана Если запрос регулятора больше или равен dE15, то реальный выход будет равен dE10 (при dE15 < dE10). Игнорируется если задано dE15 > dE10	dE14 dE10	100	100	%
dE	dE16	49214	БАЙТ			49443.6	HET	Ч/3	Процент открытия при неисправности датчика При неисправности датчика клапан открывается на dE16 % на время, задаваемое параметром dE13	0 100	0	0	%
dE	dE19	49222	БАЙТ			49444	HET	Ч/3	Допуск сопротивления обмотки Шагового мотора	0 255		0	%
dE	dE74	16464	БАЙТ		-1	49461	HET	Ч/3	Рабочая точка Регулятора	-999 9999	0	0	число
dE	dE75	16466	БАЙТ		-1	49461.2	HET	Ч/3	Дифференциал Регулятора	1 9999	40	40	число
dE	dE76	49236	БАЙТ			49461.4	HET	Ч/3	Время Импульса (Работы) Регулятора в ШИМ режиме при неисправности датчика	0 255	0	0	мин
dE	dE77	49237	БАЙТ			49461.6	HET	Ч/3	Время Паузы (Простоя) Регулятора в ШИМ режиме при неисправности датчика	0 255	0	0	мин
dE	dE78	49229	БАЙТ			49462	HET	Ч/3	Режим работы регулятора Перегрева (Нагрев/Охлаждение) 0 = регулятора нет 1 = в режиме НАГРЕВА 2 = в режиме ОХЛАЖДЕНИЯ	0 2	0	0	число
dE	dE79	16604	БАЙТ		-1	49462.2	HET	Ч/3	Рабочая точка ПИД Регулятора	-999 9999	250	250	число

Руководство по Установке и Использованию Страница. 77 / 117

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dE	dE81	49364	БАЙТ			49462.4	HET	Ч/3	Режим использования ПИД регулятора 0 = не используется 1 = локальный регулятор 2 = удаленный регулятор 3 = только давление с ПИД 4 =	0 3		1	число
dE	dE82	16584	БАЙТ		-1	49462.6	HET	Ч/3	Пропорциональная зона ПИД регулятора	-999 9999	-40	-40	K
dE	dE83	16586	БАЙТ			49463	HET	Ч/3	Постоянная Интегрирования ПИД регулятора	0 1999	90	90	сек
dE	dE84	16588	БАЙТ			49463.2	HET	Ч/3	Постоянная Дифференцирования ПИД регулятора	0 1999	0	0	сек
dE	dE97	49224	БАЙТ			49464.6	HET	4/3	Период перекрытия клапана	0 255	48	48	час
dE	dE98	49374	БАЙТ			49465	HET	Ч/3	Разрешить управление Каскадной системой 0 = блокировано; 1 = разрешено	0 1		1	флаг
dE	dE_5	49180	BYTE			49453	N	RW	Минимальный процент перегрева в форсированнолм режиме	0 100		0	%
dE	dE_6	49181	BYTE			49426	N	RW	Время поддержания минимального процента перегрева на уровне dE_5 в форсированном режиме В течение времени dE_6 в контуре CO2 значение dE_5 используется как нижний предел процента перегрева	0 255		0	sec
dE	dE93	49231	БАЙТ			49444.2	HET	Ч/3	Период цикла управления шаговым двигателем Устанавливает период цикла включения/выключения клапана (ШИМ цикла) шагового мотора клапана (смотри dE08)	0 255		10	сек*10

Страница. 78 / 117

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dE	dE20	49215	БАЙТ			49444.4	ДА	Ч/3	Выбор типа хладогента Значение используется, если DIP переключатель выбора хладогента установлен в значение 15, иначе dE20 игнорируется. • (0) r404 = R404A; • (1) r22 = r22; • (2) r410 = R410a; • (3) r134 = R134a; • (4) r744 = R744 (C02); • (5) r407 = R407C; • (6) r427 = R427A; • (7) r507 = R507A • (8) r717 = R717 • (9) r290 = R290 • (10)(14) = НЕ ИСПОЛЬЗУЮТСЯ (РЕЗЕРВ) • (15) = пользовательский (исходное значение R404A)	0 15		3	число
dE	dE21	49216	БАЙТ			49444.6	HET	Ч/3	Тип рабочего режима 0 системы • 0= Пользовательские настройки • 1= канальная холодильная установка с быстрым изменением давления (т.е. ступенчатое управление) • 2= канальная холодильная установка с контролем давления испарения (т.е. инверторное управление) • 3= Холодильная установка со встроенным компрессором • 4= Холодильная установка со встроенным компрессором и рекуперативным теплообменником • 5,6= значения НЕ ИСПОЛЬЗУЮТСЯ • 7= Кондиционер с пластинчатым теплообменником • 8= Кондиционер с теплообменником с ребрами • 10= Кондиционер переменной производительности • 11= Возмущенные кондиционерные установки • 1216= значения НЕ ИСПОЛЬЗУЮТСЯ	0 16		5	число
dE	dE22	49225	БАЙТ			49445	HET	4/3	Тип рабочего режима 1 системы Аналогично dE02	0 16		5	число

Руководство по Установке и Использованию

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	Ч/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dE	dE23	49226	БАЙТ			49445.2	HET	Ч/3	Тип рабочего режима 2 системы Аналогично dE02	0 16		5	число
dE	dE24	49227	БАЙТ			49445.4	HET	Ч/3	Тип рабочего режима 3 системы Аналогично dE02	0 16		5	число
dE	dE30	49308	БАЙТ			49445.6	HET	Ч/3	Разрешить пересчет Рабочей точки перегрева Разрешает производить автоматический пересчет исходной Рабочей точки перегрева 0= пересчет запрещен. Рабочая точка = dE31; 1= автоматический пересчет разрешен	0 1		0	флаг
dE	dE31	16512	СЛОВО		-1	49446	HET	Ч/3	Верхний предел перегрева Устанавливает SP4 в значение dE31 (SP2) для регулирования перегрева после перезапуска регулятора или окончания разморозки Активен в течение dE51 (или когда нет контроля МОР)	0 1000		30	°C/°F
dE	dE32	16510	СЛОВО		-1	49446.2	HET	Ч/3	Нижний предел перегрева Применяется к SP4 для управления перегревом (желаемый перегрев) Если dE30 = 1 (пересчет запрещен) и расчетная Рабочая точка < dE32, то рабочая точка = dE32.	0 1000		60	°C/°F
dE	dE33	16514	СЛОВО			49446.4	HET	Ч/3	Базовый период пересчета перегрева Используется при dE30=1 (пересчет разрешен) Задает период пересчета Рабочей точки перегрева (каждые dE33 секунды)	0 999		20	сек
dE	dE34	16516	СЛОВО		-1	49446.6	HET	Ч/3	Шаг изменения расчетного перегрева Каждый период Рабочая точка изменяется на не более чем dE34 с учетом ограничения по dE32.	0 1000		1	°C/°F
dE	dE35	16470	СЛОВО			49447	HET	Ч/3	Время постоянного открытия клапана после перезапуска (Выкл>Вкл.)	0 1999		0	сек
dE	dE36	16518	СЛОВО	ДА	-1	49447.2	HET	Ч/3	Пропорциональная зона регулирования перегрева	-99991		-100	K
dE	dE37	16520	СЛОВО			49447.4	HET	Ч/3	Интегральная постоянная регулирования перегрева	0 1999		40	сек
dE	dE38	16522	слово			49447.6	HET	Ч/3	Дифференциальная постоянная регулирования пере- грева	0 1999		0	сек

ПАПКА	MET- KA	АДРЕС ЗНАЧ.	РАЗМЕР ЗНАЧ.	KOH- BEP.	мно- жит.	АДРЕС ВИЗУАЛ.	ПЕРЕ- ЗАПУСК	4/3	ОПИСАНИЕ	диапазон	V900	V910	Ед.Изм
dE	dE47	49329	БАЙТ			49450	HET	Ч/3	Разрешить ручное открытие клапана 0= автоматическое открытие клапана; 1= ручные открытие клапана	0 1	0	0	флаг
dE	dE48	16546	СЛОВО		-1	49450.2	HET	Ч/3	Процент ручного открытия клапана Внимание: Значимо при dE47 = 1. Помните, клапан перейдет с автоматического на ручное управление (dE47=1) с открытием его на заданный процент dE48 %, только если значения параметра не равен исходному, установленному в 0%).	0.0 100.0	0	0	%
dE	dE50	49270	БАЙТ			49450.4	HET	4/3	Разрешить контроль Максимального рабочего давления (МОР) 0 = контроль Максимального рабочего давления (МОР) блокирован; 1 = контроль Максимального рабочего давления (МОР) включен.	0 1		0	флаг
dE	dE51	16478	СЛОВО			49450.6	HET	Ч/3	Время блокирования контроля Максимального рабочего давления (МОР) при запуске Задержка включения контроля МОР после включения регулятора или после окончании Разморозки.	0 999		0	сек
dE	dE52	16472	СЛОВО	ДА	-1	49451	HET	Ч/3	Верхний порог температуры Испарения Рабочая точка контроля Максимального рабочего давления (МОР)	-60.0 100.0		0	°C/°F
dE	dE53	49271	БАЙТ			49451.2	HET	Ч/3	Задержка выдачи аварии МОР с момента превышения верхнего порога Если порог dE52 превышен на время большее чем dE53 то выдается авария МОР.	0 255		180	сек
dE	dE54	16480	БАЙТ			49451.4	HET	Ч/3	Пропорциональная зона регулятора Максимального рабочего давления (МОР)	1 9999		10	К
dE	dE55	16482	БАЙТ			49451.6	HET	Ч/3	Постоянная интегрирования регулятора Максимального рабочего давления (МОР)	0 9999		10	сек
dE	dE56	16484	БАЙТ			49452	HET	Ч/3	Постоянная дифференцирования регулятора Максимального рабочего давления (МОР)	0 9999		0	сек
Ui	Ui27	17988	СЛОВО			49458.6	HET	Ч/3	Пароль уровня Инсталлятора	0 255	1	1	число
Ui	Ui28	17990	СЛОВО			49459	HET	4/3	Пароль уровня Производителя	0 255	2	2	число

Таблица 37 Параметры и их Визуализация

Руководство по Установке и Использованию

10.1.3. Параметры настройки клапана

dE00	Тип	dE01	dE02	dE03	dE04	dE05	dE06	dE07	dE08	dE09	dE80
-	КЛАПАНА	шагов/сек	шагов	шагов	мА	Ом	мА	число	%	10*мсек/шаг	шагов/сек
0	Пользовательский	200	1596	100	120	100	50	0	100	50	15
1	DANFOSS ETS50	160	2625	160	100	52	75	0	100	50	10
2	DANFOSS ETS100	300	3530	160	100	52	75	0	100	50	10
3	ALCO EX4 EX5 EX6	500	750	100	500	13	100	0	100	50	10
4	ЗНАЧ. НЕ ИСПОЛЬЗ.	-	-	-	-	-	-	-	-	-	-
5	ALCO EX7	210	1600	100	750	8	250	0	100	50	10
6	ALCO EX8	500	2600	100	800	6	500	0	100	50	10
7	ЗНАЧ. НЕ ИСПОЛЬЗ.	-	-	-	-	-	-	-	-	-	-
8	SPORLAN SER	200	1596	100	120	100	50	0	100	50	10
9	SPORLAN SEI-30	200	3193	100	160	75	50	0	100	50	10
10	SPORLAN SEI-50 SEH*	200	6386	100	160	75	50	0	100	50	10
11	ЗНАЧ. НЕ ИСПОЛЬЗ.	-	-	-	-	-	-	-	-	-	-
12	SPORLAN SER(I) G, J, K, B, C, D	160	2500	100	120	100	50	0	100	255	12
13	ALCO EXM246/ EXL246	45	250	100	65	250	65	1	100	50	10
14	SANHUA DPF(Q)/ DPF(T01)	40	250	50	105	92	35	1	100	50	10
15	ELIWELL SXVB manufactured by CASTEL	20	195	60	-200	54	50	0	100	50	10

Таблица 38 Параметры настройки клапанов

^{*}Sporlan SEH: ТОЛЬКО Биполяные модели

10.1.4. Параметры настройки клапанов dE01...dE09, dE80 при dE00 = 0

Помните, что визуализация этих параметров не устанавливается по шине последовательного доступа Сверяйтесь с данными от Производите клапана для правильной настройки его параметров

dE00	МЕТКА	АДРЕС ЗНАЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEP.	мно- жит.	Ч/3	ОПИСАНИЕ	ДИАПА- ЗОН	ИСХОД- НОЕ	Ед.Изм.
0	dE01	16722	СЛОВО			Ч/3	Максимальная скорость шагового двигателя Задает максимальную скорость двигателя клапана, которая обеспечивает точность и четкость шагов	0 9999	200	шагов/ сек
0	dE02	16754	СЛОВО			Ч/3	Число шагов двигателя до полного открытия Задает максимальное число шагов до открытия клапана. Значение относится к режиму ПОЛНЫЙ ШАГ (dE07 = 0). После этого числа шагов клапан будет открыт.	0 9999	1596	шагов
0	dE03	49553	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана Определяет число дополнительных шагов до упора для гарантии полно- го и надежного закрытия клапана. Команда полного закрытия означает, что клапан после момента закрытия выполняет еще dE03 шагов	0 255	100	шагов
0	dE04	16802	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя Задает максимальный ток одной фазы двигателя клапана (максимальный вращающий момент). Отрицательное значение: максимальный ток будет установлен в абсолютное значение (модуль) параметра dE04 с добавлением еще 50% при командах перемещения (начальная и конечная точки) в положении до 5% от полного открытия, и строго по значению dE04 при остальных перемещениях.	-1999 9999	120	мА
0	dE05	49601	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя Задает электрическое сопротивление обмотки одной фазы двигателя (проверка правильности подключения)	0 255	100	Ом
0	dE06	16850	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя Задает ток замкнутого контура остановленного двигателя (минимальный вращающий момент)	0 9999	50	мА

Руководство по Установке и Использованию Страница. 83 / 117

dE00	МЕТКА	АДРЕС ЗНАЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEP.	мно- жит.	Ч/3	ОПИСАНИЕ	ДИАПА- ЗОН	ИСХОД- НОЕ	Ед.Изм.
0	dE07	49649	БАЙТ			Ч/3	Тип управления шаговым двигателем Определяет тип управления двигателем. • 0= ПОЛНЫЙ ШАГ • 1= ПОЛОВИНА ШАГА • 2= МИКРО ШАГ клапаны CAREL • 3= ПОЛНЫЙ ШАГ клапанов CAREL • 4= ПОЛОВИНА ШАГА клапанов CAREL • 5= МИКРО ШАГ клапанов CAREL значения 35 используются ТОЛЬКО для клапанов CAREL Помните, что максимальный ток контролируется для режима ПОЛНОГО ШАГА, тогда как два других режима дают большее разрешение и подвижность но с меньшим вращающим моментом из-за модулирования тока обмотки. Более детальную информацию ищите в документации на шаговый двигатель клапана.	0 5	0	число
0	dE08	50961	БАЙТ			Ч/3	% импульса в периоде цикла управления шаговым мотором При перегреве мотора клапана рекомендуется снизить ширину импульса в цикле его управления, что позволяет понизить его температуру	0 100	100	%
0	dE09	50977	БАЙТ			Ч/3	Ускорение / замедление шагового мотора Определяет частоту включения / выключения мотора при его открытии и закрытии (запуске и остановке). При ускорении при запуске время между текущим шагом с следующим уменьшается на значение dE09 при каждом шаге пока скорость не достигает максимального значения, равного dE01. При замедлении при остановке время между текущим шагом с следующим увеличивается на значение dE09 при каждом шаге пока скорость не достигает минимального значения, равного dE80. Если dE09 =0 ,то ускорение и замедление не используются	0 255	50	10*мсек/ шаг
0	dE80	50993	БАЙТ			4/3	Минимальная скорость шагового двигателя при ускорении/замедлении Определяет минимальную скорость начала ускорения при включениях (остановках) мотора	0 255	15	шагов/ сек

10.1.5. Параметры настройки клапанов dE01...dE09, dE80 при dE00 ≠0

dE00	КЛАПАН	МЕТКА	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	мно- жит.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
1	DANFOSS ETS50	dE01	16722	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	160	шагов/сек
1	DANFOSS ETS50	dE02	16754	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	2625	шагов
1	DANFOSS ETS50	dE03	49553	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	160	шагов
1	DANFOSS ETS50	dE04	16802	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	100	мА
1	DANFOSS ETS50	dE05	49601	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	52	ohm
1	DANFOSS ETS50	dE06	16850	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	75	мА
1	DANFOSS ETS50	dE07	49649	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
1	DANFOSS ETS50	dE08	50961	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
1	DANFOSS ETS50	dE09	50977	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
1	DANFOSS ETS50	dE80	50993	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
2	DANFOSS ETS100	dE01	16724	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	300	шагов/сек
2	DANFOSS ETS100	dE02	16756	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	3530	шагов
2	DANFOSS ETS100	dE03	49554	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	160	шагов
2	DANFOSS ETS100	dE04	16804	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	100	мА

Руководство по Установке и Использованию Страница. 85 / 117

dE00	КЛАПАН	METKA	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	МНО- ЖИТ.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
2	DANFOSS ETS100	dE05	49602	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	52	ohm
2	DANFOSS ETS100	dE06	16852	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	75	мА
2	DANFOSS ETS100	dE07	49650	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
2	DANFOSS ETS100	dE08	50962	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
2	DANFOSS ETS100	dE09	50978	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
2	DANFOSS ETS100	dE80	50994	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
3	ALCO EX4 EX5 EX6	dE01	16726	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	500	шагов/сек
3	ALCO EX4 EX5 EX6	dE02	16758	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	750	шагов
3	ALCO EX4 EX5 EX6	dE03	49555	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
3	ALCO EX4 EX5 EX6	dE04	16806	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	500	мА
3	ALCO EX4 EX5 EX6	dE05	49603	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	13	ohm
3	ALCO EX4 EX5 EX6	dE06	16854	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	100	мА
3	ALCO EX4 EX5 EX6	dE07	49651	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
3	ALCO EX4 EX5 EX6	dE08	50963	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора		100	%
3	ALCO EX4 EX5 EX6	dE09	50979	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг

dE00	КЛАПАН	МЕТКА	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	МНО- ЖИТ.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
3	ALCO EX4 EX5 EX6	dE80	50995	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
4	ЗНАЧЕНИЕ НЕ ИСПОЛЬЗ-СЯ	-	-	-	-	-	-	-	-	-	-
5	ALCO EX7	dE01	16730	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	210	шагов/сек
5	ALCO EX7	dE02	16762	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	1600	шагов
5	ALCO EX7	dE03	49557	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
5	ALCO EX7	dE04	16810	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	750	мА
5	ALCO EX7	dE05	49605	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	8	ohm
5	ALCO EX7	dE06	16858	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	250	мА
5	ALCO EX7	dE07	49653	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
5	ALCO EX7	dE08	50965	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
5	ALCO EX7	dE09	50981	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
5	ALCO EX7	dE80	50997	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
6	ALCO EX8	dE01	16732	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	500	шагов/сек
6	ALCO EX8	dE02	16764	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	2600	шагов
6	ALCO EX8	dE03	49558	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов

Руководство по Установке и Использованию Страница. 87 / 117

dE00	КЛАПАН	МЕТКА	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	МНО- ЖИТ.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
6	ALCO EX8	dE04	16812	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	800	мА
6	ALCO EX8	dE05	49606	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	6	ohm
6	ALCO EX8	dE06	16860	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	500	мА
6	ALCO EX8	dE07	49654	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
6	ALCO EX8	dE08	50966	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
6	ALCO EX8	dE09	50982	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
6	ALCO EX8	dE80	50998	БАЙТ			Ч/3	MNHNWSUPHSA CKODOCLP INSCOBOLO		10	шагов/сек
7	CAREL E2V E3V E4V E5V E6V E7V	dE01	16734	СЛОВО			Ч/3	двигателя		45	шагов/сек
7	CAREL E2V E3V E4V E5V E6V E7V	dE02	16766	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	480	шагов
7	CAREL E2V E3V E4V E5V E6V E7V	dE03	49559	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	70	шагов
7	CAREL E2V E3V E4V E5V E6V E7V	dE04	16814	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	450	мА
7	CAREL E2V E3V E4V E5V E6V E7V	dE05	49607	БАЙТ			Ч/3	3 Сопротивление обмотки шагового двигателя 0 255 3		36	ohm
7	CAREL E2V E3V E4V E5V E6V E7V	dE06	16862	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	100	мА

dE00	КЛАПАН	МЕТКА	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	мно- жит.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
7	CAREL E2V E3V E4V E5V E6V E7V	dE07	49655	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	3	число
7	CAREL E2V E3V E4V E5V E6V E7V	dE08	50967	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	30	%
7	CAREL E2V E3V E4V E5V E6V E7V	dE09	50983	БАЙТ			Ч/3	Ускорение / замедление шагового мотора 0 25		250	10*мсек/шаг
7	CAREL E2V E3V E4V E5V E6V E7V	dE80	50999	БАЙТ			Ч/3	/3 Минимальная скорость шагового двигателя 0 25		10	шагов/сек
8	SPORLAN SER	dE01	16736	СЛОВО			Ч/3	Ч/3 Максимальная скорость шагового о 99		200	шагов/сек
8	SPORLAN SER	dE02	16768	СЛОВО			4/3	Число шагов двигателя до полного открытия	0 9999	1596	шагов
8	SPORLAN SER	dE03	49560	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
8	SPORLAN SER	dE04	16816	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	120	мА
8	SPORLAN SER	dE05	49608	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	100	ohm
8	SPORLAN SER	dE06	16864	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	50	мА
8	SPORLAN SER	dE07	49656	БАЙТ			4/3	Тип управления шагорым		0	число
8	SPORLAN SER	dE08	50968	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
8	SPORLAN SER	dE09	50984	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
8	SPORLAN SER	dE80	51000	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек

Руководство по Установке и Использованию Страница. 89 / 117

dE00	КЛАПАН	METKA	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	МНО- ЖИТ.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
9	SPORLAN SEI-30	dE01	16738	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	200	шагов/сек
9	SPORLAN SEI-30	dE02	16770	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	3193	шагов
9	SPORLAN SEI-30	dE03	49561	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
9	SPORLAN SEI-30	dE04	16818	СЛОВО			Ч/3	шагового двигателя		160	мА
9	SPORLAN SEI-30	dE05	49609	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	75	ohm
9	SPORLAN SEI-30	dE06	16866	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	50	мА
9	SPORLAN SEI-30	dE07	49657	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
9	SPORLAN SEI-30	dE08	50969	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
9	SPORLAN SEI-30	dE09	50985	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
9	SPORLAN SEI-30	dE80	51001	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
10	SPORLAN SEI- 50 SEH*	dE01	16740	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	200	шагов/сек
10	SPORLAN SEI- 50 SEH *	dE02	16772	СЛОВО			4/3	Число шагов двигателя до полного открытия	0 9999	6386	шагов
10	SPORLAN SEI- 50 SEH *	dE03	49562	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
10	SPORLAN SEI- 50 SEH *	dE04	16820	СЛОВО			Ч/3	Максимальный ток обмотки -1999 9999 1		160	мА
10	SPORLAN SEI- 50 SEH *	dE05	49610	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	75	ohm

dE00	КЛАПАН	МЕТКА	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	МНО- ЖИТ.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
10	SPORLAN SEI- 50 SEH *	dE06	16868	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	50	мА
10	SPORLAN SEI- 50 SEH *	dE07	49658	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число
10	SPORLAN SEI- 50 SEH *	dE08	50970	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
10	SPORLAN SEI- 50 SEH *	dE09	50986	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
10	SPORLAN SEI- 50 SEH *	dE80	51002	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
11	ЗНАЧЕНИЕ НЕ ИСПОЛЬЗ-СЯ	-	-	-	-	-	-	-	-	-	-
12	SPORLAN SER(I) G, J, K, B, C, D	dE01	16744	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	160	шагов/сек
12	SPORLAN SER(I) G, J, K, B, C, D	dE02	16776	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	2500	шагов
12	SPORLAN SER(I) G, J, K, B, C, D	dE03	49564	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
12	SPORLAN SER(I) G, J, K, B, C, D	dE04	16824	СЛОВО			4/3	Максимальный ток обмотки шагового двигателя	-1999 9999	120	мА
12	SPORLAN SER(I) G, J, K, B, C, D	dE05	49612	БАЙТ			4/3	Сопротивление обмотки шагового двигателя	0 255	100	ohm
12	SPORLAN SER(I) G, J, K, B, C, D	dE06	16872	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	50	мА
12	SPORLAN SER(I) G, J, K, B, C, D	dE07	49660	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	0	число

Руководство по Установке и Использованию

dE00	КЛАПАН	METKA	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	МНО- ЖИТ.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
12	SPORLAN SER(I) G, J, K, B, C, D	dE08	50972	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
12	SPORLAN SER(I) G, J, K, B, C, D	dE09	50988	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	255	10*мсек/шаг
12	SPORLAN SER(I) G, J, K, B, C, D	dE80	51004	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	12	шагов/сек
13	ALCO EXM246/ EXL246	dE01	16746	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	45	шагов/сек
13	ALCO EXM246/ EXL246	dE02	16778	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	250	шагов
13	ALCO EXM246/ EXL246	dE03	49565	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	100	шагов
13	ALCO EXM246/ EXL246	dE04	16826	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	65	мА
13	ALCO EXM246/ EXL246	dE05	49613	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	250	ohm
13	ALCO EXM246/ EXL246	dE06	16874	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	65	мА
13	ALCO EXM246/ EXL246	dE07	49661	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	1	число
13	ALCO EXM246/ EXL246	dE08	50973	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
13	ALCO EXM246/ EXL246	dE09	50989	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
13	ALCO EXM246/ EXL246	dE80	51005	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
14	SANHUA DPF(Q)/ DPF(T01)	dE01	16750	СЛОВО			Ч/3	Максимальная скорость шагового мотора 0		40	шагов/сек

dE00	КЛАПАН	METKA	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	мно- жит.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.
14	SANHUA DPF(Q)/ DPF(T01)	dE02	16782	СЛОВО			Ч/3	Число шагов двигателя до полного открытия	0 9999	250	шагов
14	SANHUA DPF(Q)/ DPF(T01)	dE03	49567	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	50	шагов
14	SANHUA DPF(Q)/ DPF(T01)	dE04	16830	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	105	мА
14	SANHUA DPF(Q)/ DPF(T01)	dE05	49615	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	92	ohm
14	SANHUA DPF(Q)/ DPF(T01)	dE06	16878	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999	35	мА
14	SANHUA DPF(Q)/ DPF(T01)	dE07	49663	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5	1	число
14	SANHUA DPF(Q)/ DPF(T01)	dE08	50975	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%
14	SANHUA DPF(Q)/ DPF(T01)	dE09	50991	БАЙТ			Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг
14	SANHUA DPF(Q)/ DPF(T01)	dE80	51007	БАЙТ			Ч/3	Минимальная скорость шагового двигателя	0 255	10	шагов/сек
15	ELIWELL SXVB пр. Castel	dE01	16750	СЛОВО			Ч/3	Максимальная скорость шагового мотора	0 9999	20	шагов/сек
15	ELIWELL SXVB пр. Castel	dE02	16782	СЛОВО			Ч/3	Число шагов двигателя до полного открытия 0 9999		195	шагов
15	ELIWELL SXVB пр. Castel	dE03	49567	БАЙТ			Ч/3	Число возможных шагов после закрытия клапана	0 255	60	шагов

Руководство по Установке и Использованию Страница. 93 / 117

dE00	КЛАПАН	METKA	АДРЕС ЗНА- ЧЕН.	РАЗМЕР ЗНАЧЕН.	KOH- BEPC.	мно- жит.	Ч/3	ОПИСАНИЕ	диапазон	ИСХОД- НОЕ	Ед.Изм.		
15	ELIWELL SXVB пр. Castel	dE04	16830	СЛОВО			Ч/3	Максимальный ток обмотки шагового двигателя	-1999 9999	-200	мА		
15	ELIWELL SXVB пр. Castel	dE05	49615	БАЙТ			Ч/3	Сопротивление обмотки шагового двигателя	0 255	54	ohm		
15	ELIWELL SXVB пр. Castel	dE06	16878	СЛОВО			Ч/3	Расчетный ток обмотки шагового двигателя	0 9999 50 n		мА		
15	ELIWELL SXVB пр. Castel	dE07	49663	БАЙТ			Ч/3	Тип управления шаговым двигателем	0 5 0 числ		число		
15	ELIWELL SXVB пр. Castel	dE08	50975	БАЙТ			Ч/3	Ширина импульса в цикле шагового мотора	0 100	100	%		
15 ELIWELL SXVB пр. Castel dE09 50991 БАЙТ Ч/3		Ч/3	Ускорение / замедление шагового мотора	0 255	50	10*мсек/шаг							
15 ELIWELL SXVB пр. Castel dE80 51007 БАЙТ Ч/3 Минимальная скорость шагового двигателя 0 255 10 шаг		шагов/сек											
		Таблица 40 Параметры настройки клапанов dE01dE09, dE80 при dE00 ≠0											

Страница. 94 / 117

10.1.6. Визуализация папок параметров

METKA	АДРЕС ВИЗУАЛИЗ.	Ч/3	ОПИСАНИЕ	РАЗМЕР ВИЗУАЛИЗ.	конверс.	диапазон	исходное	множит.	Ед.Изм.
rE	49424	4/3	Визуализация папки	2 бита		0 3	3		число
Ai	49424.2	4/3	Визуализация папки	2 бита		0 3	3		число
di	49424.4	Ч/3	Визуализация папки	2 бита		0 3	3		число
dO	49424.6	Ч/3	Визуализация папки	2 бита		0 3	3		число
SP	49425	Ч/3	Визуализация папки	2 бита		0 3	3		число
PAr	49425.2	Ч/3	Визуализация папки	2 бита		0 3	3		число
FnC	49425.4	Ч/3	Визуализация папки	2 бита		0 3	3		число
PASS	49425.6	Ч/3	Визуализация папки	2 бита		0 3	3		число
SP1	49426.2	Ч/3	Визуализация папки	2 бита		0 3	3		число
SP2	49426.4	Ч/3	Визуализация папки	2 бита		0 3	3		число
SP3	49426.6	Ч/3	Визуализация папки	2 бита		0 3	3		число
SP4	49427	Ч/3	Визуализация папки	2 бита		0 3	3		число
dF	49427.4	Ч/3	Визуализация папки	2 бита		0 3	3		число
dF43	49449	Ч/3	Визуализация папки	2 бита		0 3	3		число
dF44	49449.2	Ч/3	Визуализация папки	2 бита		0 3	3		число
dL	49427.2	4/3	Визуализация папки	2 бита		0 3	3		число
dE	49427.6	Ч/3	Визуализация папки	2 бита		0 3	3		число
UI	49428	4/3	Визуализация папки	2 бита		0 3	3		число
СС	49428.2	Ч/3	Визуализация папки	2 бита		0 3	3		число
UL	49459.2	Ч/3	Визуализация папки	2 бита		0 3	3		число
DL	49459.4	4/3	Визуализация папки	2 бита		0 3	3		число
FR	49459.6	Ч/3	Визуализация папки	2 бита		0 3	3		число

Таблица 41 Визуализация папок параметров

Руководство по Установке и Использованию
Страница. 95 / 117

10.1.7. Клиентская таблица

индекс	ПАПКА	METKA	АДРЕС ЗНАЧЕН.	Ч/3	ОПИСАНИЕ	PA3MEP 3HA- 4EH.	KOH- BEPC.	диапазон	мно- жит.	Ед. Изм.
7	Ai	drE0	483	Ч	Температура перегрева Клапана	СЛОВО	ДА	-500 9999	-1	°C/°F
8	Ai	drE1	485	Ч	Температура насыщения Клапана	СЛОВО	ДА	-500 9999	-1	°C/°F
9	Ai	drE2	487	Ч	Температура перегрева Клапана (резерв)	СЛОВО	ДА	-500 9999	-1	°C/°F
10	Ai	drE3	489	Ч	Температура насыщения Клапана (резерв)	СЛОВО	ДА	-500 9999	-1	°C/°F
11	Ai	drE4	491	Ч	Локальное значение температуры/давления для ПИД регулятора	СЛОВО	ДА	-500 9999	-1	К
12	Ai	drE5	493	Ч	Значение температуры/давления для Регулятора Включен/вЫключен	СЛОВО	ДА	-500 9999	-1	Бар/PSI
13	Ai	drE6	495	Ч	Температура/давление для ПИД регулятора	СЛОВО	ДА	-500 9999	-1	%
17	Ai	drE7	497	Ч	Перегрев клапана	СЛОВО	ДА	-500 9999	-1	К
18	Ai	drE8	499	Ч	Давление испарения клапана	СЛОВО	ДА	-500 9999	-1	Бар/PSI
19	Ai	drE9	501	Ч	Процент открытия клапана	СЛОВО	ДА	-500 9999	-1	%
20	Ai	SP4	432	Ч	Рабочая точка перегрева клапана	СЛОВО	ДА	-500 9999	-1	K
35	Di	ddi1	33230	Ч	Цифровой вход 1	1 бит		0 1		флаг
36	Di	ddi2	33230.1	Ч	Цифровой вход 2	1 бит		0 1		флаг
37	Di	Dip1	34317.1	Ч	Положение DIP переключателя 1	1 бит		0 1		флаг
38	Di	Dip2	34317.2	Ч	Положение DIP переключателя 2	1 бит		0 1		флаг
39	Di	Dip3	34317.3	Ч	Положение DIP переключателя 3	1 бит		0 1		флаг
40	Di	Dip4	34317.4	Ч	Положение DIP переключателя 4	1 бит		0 1		флаг
41	Di	Dip5	34317.5	Ч	Положение DIP переключателя 5	1 бит		0 1		флаг
42	Di	Dip6	34317.6	Ч	Положение DIP переключателя 6	1 бит		0 1		флаг
43	dO	ddO1	33231.6	Ч	Цифровой выход ddO1 (реле)	1 бит		0 1		флаг
44	dO	ddO2	33231.5	Ч	Цифровой выход ddO2 (Открытый коллектор)	1 бит		0 1		флаг
45	Авария	Er01	33031.1	Ч	Ошибка датчика dAi1	1 бит		0 1		флаг
46	Авария	Er02	33031.2	Ч	Ошибка датчика dAi2	1 бит		0 1		флаг

индекс	ПАПКА	METKA	АДРЕС ЗНАЧЕН.	Ч/3	ОПИСАНИЕ	PA3MEP 3HA- 4EH.	KOH- BEPC.	диапазон	мно- жит.	Ед. Изм.
47	Авария	Er03	33031.3	Ч	Ошибка датчика dAi3	1 бит		0 1		флаг
48	Авария	Er04	33031.4	Ч	Ошибка датчика dAi4	1 бит		0 1		флаг
49	Авария	Er05	33031.5	Ч	Ошибка датчика перегрева клапана	1 бит		0 1		флаг
50	Авария	Er06	33031.6	Ч	Ошибка датчика насыщения клапана	1 бит		0 1		флаг
51	Авария	Er07	33031.7	Ч	Авария МОР клапана	1 бит		0 1		флаг
52	Авария	Er08	33032	Ч	Авария максимального открытия клапана	1 бит		0 1		флаг
53	Авария	Er09	33032.1	Ч	Внешняя авария клапана	1 бит		0 1		флаг
55	Авария	Er11	33032.3	Ч	Авария мотора клапана: большой потребляемый ток	1 бит		0 1		флаг
56	Авария	Er12	33032.4	Ч	Авария мотора клапана: обмотка 1 не подключена	1 бит		0 1		флаг
57	Авария	Er13	33032.5	Ч	Авария мотора клапана: обмотка 1 закорочена	1 бит		0 1		флаг
58	Авария	Er14	33032.6	Ч	Авария мотора клапана: обмотка 2 не подключена	1 бит		0 1		флаг
59	Авария	Er15	33032.7	Ч	Авария мотора клапана: обмотка 2 закорочена	1 бит		0 1		флаг
60	Авария	Er16	33033	Ч	Ошибка датчика ПИД регулятора	ибка датчика ПИД регулятора 1 бит		0 1		флаг
61	Авария	Er17	33033.1	Ч	Ошибка датчика Регулятора Включен/вЫключен 1 бит 0 1		0 1		флаг	
62	Состояние	EEV_STTS_ON	33158	Ч	Разрешение управления клапаном 1 бит 0 1			флаг		
63	Состояние	EEV_STTS_ALM	33158.1	Ч	A Аварийное состояние драйвера 1 бит 0 1			флаг		
67	Сетевая Команда	EEV_STTS_REG_ ONOFF	33325.1	3	Состояние Регулятора Включен/вЫключен	1 бит 01			флаг	

Таблица 42 Клиентская таблица

^{* «}с удаленного датчика» означает с общего датчика сети

11. АВАРИИ

V910 обеспечивает комплексную диагностику системы и сигнализирует об возникновении проблем в работе выдачей определенных аварий, отображая их на дисплее и записывая в журнал, что обеспечивает пользователю максимальное удобство в управлении и обслуживании системы вцелом.

Наличие аварии всегда сигнализируется включением индикатора аварии, а так же включением цифрового выхода, если он сконфигурирован соответствующим образом.

Ошибки датчиков отображаются на основном дисплее клавиатуры SKP 10.

11.1. Таблица аварий

Метка	Описание/Причина	Реакция	Сброс	Устранение
Er01	Ошибка датчика dAi1 Измеренное значение вне допустимого диапазона. Датчик неисправен/закорочен/ оборван.	 только информация если имеется резервный (dAl2) иначе смотри Er06. 	Авто	 Проверьте подключение датчика. Замените датчик. После устранения ошибки регулятор в работе.
Er02	Ошибка датчика dAi2 Аналогично Er01.	Аналогично Er01 (по датчику dAi2).	Авто	Аналогично Er01.
Er03**	Ошибка датчика dAi3 Аналогично Er01.	 только информация, если имеется резервный (dAl4) иначе смотри Er05. 	Авто	Аналогично Er01.
Er04**	Ошибка датчика daAi4 Аналогично Er01.	Аналогично Er03 (по датчику dAi4).	Авто	Аналогично Er01
Er05**	Ошибка датчика перегрева Ошибка основного и резервного датчиков перегрева.	% открытия клапана = dE16.	Авто	Аналогично Er01.
Er06	Ошибка датчика насыщения Ошибка основного и резервного датчиков насыщения.	 пример dE50 = 0 % => % открытия клапана = dE16. пример dE50 = 0 % => клапан закрыт 	Авто	Аналогично Er01.
Er07	Авария МОР (максимального рабочего давления). Температура насыщения > Рабочей точки (dE52) дольше чем dE53.	Только при dE50=1. Клапан закрывается.	Авто	Дождитесь снижения температуры насыщения до уровня < dE52.
Er08	% открытия клапана drE7 ≥ dE10 дольше чем dE13.	Только информация.	Авто	Дождитесь снижения % открытия клапана drE7 < dE10.
Er09	Внешняя авария. По команде сконфигурированного для этого цифрового входа. Смотри параметры dL40/dL41=±3.	Клапан закрывается.	Авто	Снятие команды сконфигу- рированного для внешней аварии цифрового входа.
Er10	Авария потери связи. Потеря связи по шине последовательного доступа	Если dF02=1 или 2 (управление по шине), то Клапан закрывается.	Авто	Восстановите связь.
Er11	Авария защиты мотора. Превышение потребляемого тока.	Клапан закрывается.	Авто	Проверьте фазы мотора.Проверьте подключение мотора.
Er12	Авария защиты мотора. Обрыв обмотки 1.	Клапан закрывается.	Авто	 Проверьте подключение обмотки 1 (клеммы 6-7). Проверьте значения параметров dE01dE09, dE80.

Метка	Описание/Причина	Реакция	Сброс	Устранение
Er13	Авария защиты мотора. Закорачивание обмотки 1.	Клапан закрывается.	Авто	Проверьте подключение обмотки 1 (клеммы 6-7).Проверьте значения параметров dE01dE09, dE80.
Er14	Авария защиты мотора. Обрыв обмотки 2.	Клапан закрывается.	Авто	 Проверьте подключение обмотки 2 (клеммы 4-5). Проверьте значения параметров dE01dE09, dE80.
Er15	Авария защиты мотора. Закорачивание обмотки 2.	Клапан закрывается.	Авто	 Проверьте подключение обмотки 2 (клеммы 4-5). Проверьте значения параметров dE01dE09, dE80.
Er16(°)	Ошибка датчика установки на СО ₂ ***	Клапан закрывается.	Авто	 Проверьте подключение датчика. Замените датчик. После устранения ошибки регулятор в работе.
Er17	Ошибка датчика Регулятора Включен/вЫключен	Клапан закрывается.	Авто	 Проверьте подключение датчика. Замените датчик. После устранения ошибки регулятор в работе.

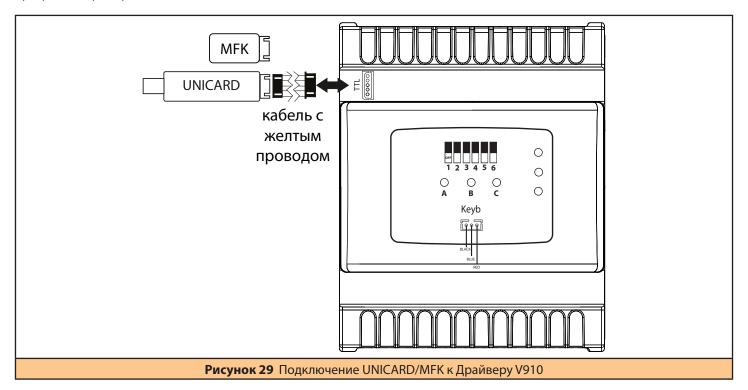
Таблица 43 Аварии

Сброс: Авто=Автоматический, снимается с устранением неисправности

(°) EWCM EO подключен → реле ВЫКЛЮЧЕНО
EWCM EO датчик давления нагнетания отсуствует → реле ВКЛЮЧЕНО

^{*}Заводские настройки

^{**} если датчик установки на CO $_2$ отказывает, то выход клапана устанавливается в минимальное значение из требуемого регулятором подачи жидкого хладагента и значением, предусмотренным для случая отказа датчика.


12. UNICARD / MFK (папка FnC)

Карточка копирования UNICARD и Мульти-функциональный ключ MFK позволяют выгружать из прибора и загружать в него таблицы параметров. Это очень удобные устройства для быстрой настройки приборов.

Благодаря наличию USB порта карточка копирования UNICARD может напрямую подключаться к ПК, а для подключения к ПК MFK необходимо воспользоваться интерфейсным модулем DMI.

После подключения кTTL порту прибора UNICARD и MFK позволяют Вам быстро перепрограммировать приборы (выгрузить их таблицу с одного прибора, а затем загрузить в один или несколько других. Эти же карточки позволяют обновить версию программы приборов до более новой.

Для подключения UNICARD/MFK к TTL порту используйте поставляемый с карточкой кабель с желтым проводом.

Выгрузка (метка UL), загрузка (метка dL) и форматирование карточки (метка Fr) выполняются следующим образом:

ВЫГРУЗКА -UL (копирование из ПРИБОРА на UNICARD / MFK

По этой команде параметры будут выгружены из прибора на UNICARD / MFK.

ЗАГРУЗКА - dL (копирование из UNICARD / MFK В ПРИБОР)

По этой команде параметры и/или программа будут загружены из UNICARD / MFK в прибор.

ФОРМАТИРОВАНИЕ - Fr*

Форматирование UNICARD / MFK приводит к удалению всех данных, хранившихся на UNICARD / MFK.

*Операцию необходимо выполнить перед первой Выгрузкой на новом типе прибора.

Есть две возможности использования UNICARD / MFK.

- Подача команд с помощью DIP переключателей (только команды Выгрузки и Загрузки)
- Подача команд всех операций с клавиатуры SKP 10.

12.1. Загрузка/Выгрузка с DIР переключателями

Выполните следующие действия:

- 1. установите UNICARD / MFK в разъем включенного прибора;
- 2. установите DIP переключатель 1 или 2 под «дверкой» во Включенное состояние (см. таблицу ниже);
- 3. по завершении операции извлеките UNICARD / MFK из разъема;
- 4. верните DIP переключатели 1 и 2 в вЫыключенное состояние.

		Dip1	2	3	4	5	6
Выгрузка/загрузка параметров	Выгрузка прибор -> UNICARD / MFK	Включен	вЫключен	ı	-	-	-
из/в UNICARD / MFK	Загрузка UNICARD / MFK -> прибор	вЫключен	Включен	-	-	-	-

Таблица 44 Загрузка/Выгрузка с DIP переключателями

12.1.1. Индикаторы при работе с DIP переключателями

Индикаторы A/B/C под «дверкой» драйвера отображают его состояние.

		Выгрузка (Прибор -> UNIKARD / MFK)				
индикатор	Цвет	Выполняется	Завершена успешно	Завершилась ошибкой		
A	Зеленый	Мигает Горит		Горит		
В	Желтый	-				
С	Зеленый	-	-	Мигает		
		Загрузка (UNIKARD / MFK -> Прибор)				
индикатор	Цвет	Выполняется	Завершена успешно	Завершилась ошибкой		
A	Зеленый	-	-	-		
В	Желтый	Мигает	Горит	Горит		
С	Зеленый	-	-	Мигает		


Таблица 45 Индикаторы при работе с DIP переключателями

12.2. Загрузка/Выгрузка с клавиатурой SKP 10

Ниже приводится пошаговая инструкция выполнения операций.

Выгрузка/Загрузка/Форматирование

Из режима основного дисплея нажмите кнопки "esc" и "set" одновременно. На дисплее появится метка 'PAr'. Используя кнопки «Вверх» и «Вниз» перейдите на метку папки функций "FnC".

Нажмите "set". На дисплее появится метка «СС».

Меню 'CC' (Copy Card) сдержит все команды по работе с Мультифункциональным ключом (MFK).

Нажмите 'set' для получения доступа к меткам соответствующих команд..

Кнопками Вверх и Вниз пролистайте меню до метки нужной команды:

- UL для Выгрузки параметров с прибора на MFK;
- dL для Загрузки параметров с MFK в прибор;
- Fr для Форматирования МFK.

Нажмите 'set' на метке выбранной команды и она будет выполнена (в примере – dL = 3агрузка)

Подождите несколько секунд.

При успешном завершении операции на дисплее высветится надпись 'YES'.

При возникновении ошибки в ходе выполнения появится надпись 'Err'.

12.2.1. Загрузка программы и параметров с UNICARD / MFK с включением прибора

Подключите UNICARD / MFK ключ к выключенному прибору.

Загрузка программы

С подачей питания на прибор, если на UNICARD / MFK имеется совместимый файл программы (UNICARD / MFK для этой цели может быть подготовлен с помощью программы Device Manager), то эта новая программа будет загружена в прибор.

Операция пройдет в следующем порядке:

- Проверка и загрузка программы (индикатор UNICARD / MFK мигает);
- Успешное завершение операции (индикатор UNICARD / MFK горит непрерывно);
- Выключите прибор и отсоедините от него UNICARD / MFK.

Если на UNICARD / MFK не было обнаружено совместимого файла программы, то ее загрузка не выполняется.

Если по завершении операции индикатор UNICARD / MFK не горит постоянно, то это указывает на ошибку выполнения операции и необходимость ее повтора.

Загрузка параметров

С включением прибора в сеть, если на UNICARD / MFK имеется совместимый файл таблицы параметров, то эти параметры будут скопированы с UNICARD / MFK в прибор.

Загрузка с подачей питания на прибор

Пример А

по завершению тестирования индикаторов... на дисплее появляется метка ...dLY...

что говорит об успешном завершении процедуры загрузки.

Пример В

по завершению тестирования индикаторов... а дисплее появляется метка...dLn...

что говорит об ошибках при выполнении процедуры загрузки. °.

В обоих случаях прибор перейдет в состояние локального выключения (на дисплее отображается метка OFF).

При нажатии кнопки «ВНИЗ» (°°) прибор начнет работу:

- с новым набором параметров в случае примера А;
- со старым набором параметров в случае примера В.

Извлеките UNICARD / MFK по завершении операции.

- Если на UNICARD / MFK загружены и файл с совместимой программой и совместимой таблицей параметров, то сначала загружается программа прибора и только затем (после нового снятия питания с прибора и его повторной подачи) загрузится и таблица параметров.
- Функция форматирования ТРЕБУЕТСЯ ТОЛЬКО ДЛЯ ВЫГРУЗКИ**.
 - перед первым использованием UNICARD / MFK (UNICARD / MFK еще ни разу не использовался);
 - при изменении модели прибора, с которым ранее использовался UNICARD / MFK, которая несовместима с новой моделью.

** запрограммированные на заводе и поставляемые Eliwell UNICARD / MFK для ЗАГРУЗКИ в прибор новых программ или таблиц параметров ФОРМАТИРОВАТЬ НЕ НАДО.

Операцию ФОРМАТИРОВАНИЯ отменить НЕЛЬЗЯ (все данные будут утеряны).

- После успешного завершения операции Загрузки прибор начинает работу с загруженной программой и/или таблицей параметров.
- По завершении операции отсоедините UNICARD / MFK от Прибора.
- ° Если при выполнении Загрузки с UNICARD / MFK при включении появляется метка Err или dLn:
- Проверьте подключаемый к прибору UNICARD / MFK.
- Проверьте состояние соединения между UNICARD / MFKи Драйвером V900/V910 (убедитесь в целостности и правильном подключении TTL кабеля).
- Проверьте совместимость UNICARD / MFK и его данных с прибором.
- Обратитесь за технической поддержкой в офис продаж Eliwell.

[°]Смотри раздел «6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ» на стр. '6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ' на стр. 25.

13. ЗАГРУЗЧИК ПРОГРАММЫ

Прибор имеет встроенный **Загрузчик Программы** (**Boot Loader**), что позволяет обновить версию программы прибора непосредственно на месте использования прибора без использования ПК. Обновление программы возможно с использованием UNICARD или MFK.

Процедура обновления:

- Подключите к прибору UNICARD/MFK с соответствующей прибору программой;
- Подайте питание на прибор (если карточку подключили к запитанному прибору, то передерните питание прибора) ПОМНИТЕ: Карточку UNICARD/MFK можно подключать и к запитанному прибору, но операция в этом случае начнется только после передергивания (снятия и повторной подачи) питания.
- Мигание индикатора UNICARD/MFK указывает на выполнение операции загрузки, подождитее до ее завершения;
- По окнчании операции загрузки индикатор UNICARD/MFK будет:
 - ГОРЕТЬ: при успешном завершении операции;
 - ПОГАШЕН: при неудаче выполнения операции (приложение несовместимо и т.п...)

ВНИМАНИЕ: правильная работа Индикаторов гарантируется для UNICARD с датой производства начиная с недели 18-12. Чтобы иметь возможность загрузки новой версии программы в ПК на UNICARD (ранее был доступен только режим КЛОНИРОВАНИЯ для таблиц параметров) необходимо, что бы программа Device Manager имела версию не ниже 05.00.06 (установочные файлы программы можно скачать с 3оны ограниченного доступа web сайта Eliwell (уровень 2) или служебного сайта Московского офиса.

ВНИМАНИЕ: начиная с этой версии программы Device Manager (05.00.06) появилась возможность прямого подключения UNICARD к ПК без необходимости использования интерфейсного модуля DMI.

14. МОНИТОРИНГ

Порт последовательного доступа TTL - так же называемый COM0 – может использоваться для настройки параметров прибора, просмотра его состояний и переменных с использованием протокола Modbus.

14.1. Настройка с использованием Modbus RTU

Modbus - это протокол клиент/сервер для организации взаимодействия приборов сети.

Modbus приборы общаются с использованием технологии Мастер – Слэйв, где только один прибор (Мастер) может отправлять сообщения. Все другие приборы сети (Слэйвы) отвечают передачей запрошенных Мастером данных или выполнением действий, предписанных сообщением Мастера. Слэйв определяется как прибор, подключенный к сети, по которой происходит обмен информацией, и отправляющий результаты своих действий Мастеру с использованием протокола Modbus.

Мастер может отправлять сообщения как отдельным Слэйвам сети, так и всей сети в целом (вещание), тогда как Слэйвы отвечают только Мастеру на сообщения, отправленные именно этому прибору.

Используемый Eliwell стандарт кодирования и передачи данных - Modbus RTU.

14.1.1. Формат данных (RTU)

Модель кодирования данных использует определенную структуру отправляемого в сеть сообщения и принцип декодирования информации. Выбор типа кодирования обычно определяется параметрами (скорость, четность и т.п.)*. Некоторые приборы поддерживают только определенные типы кодирования. Поэтому для всех приборов сети необходимо выбрать общий тип кодирования и использовать только его во всей сети Modbus.

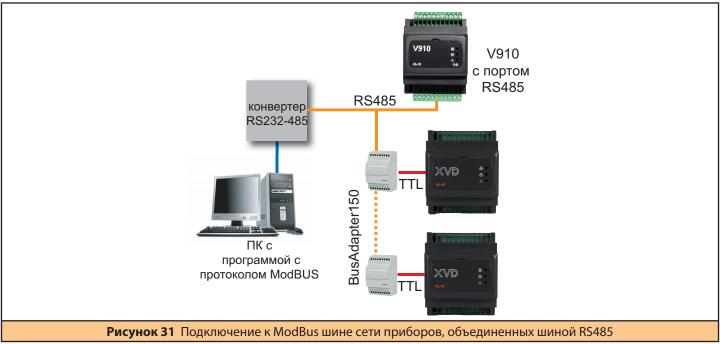
Протокол использует RTU двоичный метод со следующими настройками бит:

• 8 бит данных, бит четности (не конфигурируется), 1 стоповый бит.

Прибор полностью настраивается заданием значений параметров.

Эти настройки можно выполнить:

- с помощью удаленной клавиатуры SKP 10;
- с использованием Мультифункционального ключа (МFK);


отправкой команд по сети Modbus напрямую конкретному прибору или всем приборам (по адресу 0).

^{*} задаются параметрами dF30, dF31.

Смотри (Рис.Рисунок 30) и (РисРисунок 31) для схем подключения с использованием протокола MODBUS.

Подключение ПК к Конвертеру	кабель RS232		
Подключение приборов к Bus Adapter-y	5-ти контактный TTL кабель длиной 30 см (другие длины кабелей под заказ)		
Bus Adapter 150	Преобразователь TTL/RS485 для приборов без своего порта RS485		
Подключение Bus Adapter-ов к Конвертеру	кабель шины RS485, экранированная витая пара (например: Belden кабель модели 8762)		

Таблица 46 Типы подключений с Modbus протоколом

Имеющиеся команды Modbus и диапазон данных

Команды Modbus	Описание команды			
3	Чтение нескольких регистров на Клиентской стороне			
16	Запись нескольких регистров на Клиентской стороне			
	0	Идентификатор Производителя		
43	1	Идентификатор Модели прибора		
	2	Идентификатор Версии прибора		

Таблица 47 Имеющиеся команды Modbus и диапазон данных

Максимальная длина данных, отправляемых на прибор	60 БАЙТ
Максимальная длина данных, получаемых от прибора	60 БАЙТ

Таблица 48 Ограничение длины данных

14.2. Настройка адреса прибора

Адрес прибора (Номер Прибора) в сети ModBus задается параметром dF30. Смотри раздел «10. ПАРАМЕТРЫ (PAr)» на стр.′10. ПАРАМЕТРЫ (PAr)′ на стр. 69.

Адрес "0" для вещательного сообщения всем Слэйвам сети, на которое Слэйвы НЕ отвечают.

14.2.1. Определение адресов параметров

Все адреса параметров и их визуализации приведены в таблице параметров в разделе «10.1.2. Таблица Параметров и их Визуализации» на стр. '10.1.2. Таблица Параметров и их Визуализации' на стр. 72.

14.2.2. Определение адресов переменных и состояний

Все адреса переменных и состояний установки приведены в разделе **«10.1.7. Клиентская таблица» на стр.′10.1.7. Клиентская таблица′ на стр. 96.**

Eliwell Controls s.r.l.

Via dell'Industria, 15 • Z.I. Paludi 32010 Pieve d'Alpago (BL) ITALY T+39 0437 986 111

www.eliwell.com

Technical Customer Support

T+39 0437 986 300 E techsuppeliwell@schneider-electric.com

Sales

T+39 0437 986 100 (Italy) T +39 0437 986 200 (other countries) E saleseliwell@schneider-electric.com

Московский офис

115230, г. Москва, ул. Нагатинская д. 2/2 подъезд 2, этаж 3, офис 3 **тел./факс** +7 499 611 79 75

+7 499 611 78 29

отдел продаж: michael@mosinv.ru

техническая поддержка: leonid@mosinv.ru

www.eliwell.mosinv.ru

