
FREE Studio Plus
Operating Guide
Original instructions

9MA10256.04
12/2023

www.eliwell.com

https://www.eliwell.com

Legal Information
The information provided in this document contains general descriptions, technical
characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and
site-specific development or schematic plan. It is not to be used for determining
suitability or reliability of the products/solutions for specific user applications. It is the
duty of any such user to perform or have any professional expert of its choice
(integrator, specifier or the like) perform the appropriate and comprehensive risk
analysis, evaluation and testing of the products/solutions with respect to the relevant
specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its
subsidiaries referred to in this document are the property of Schneider Electric SE or
its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and
provided for informative use only. No part of this document may be reproduced or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), for any purpose, without the prior written permission of
Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the
document or its content, except for a non-exclusive and personal license to consult it
on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in
the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is
assumed by Schneider Electric and its subsidiaries for any errors or omissions
in the informational content of this document, as well as any non-intended use
or misuse of the content thereof.

Table of Contents
Safety Information .. 11
About the Book...12

Getting Started with FREE Studio Plus ...15
Getting Started with FREE Studio Plus...16

Introduction to FREE Studio Plus ...16
System Requirements and Supported Devices......................................17

System Requirements ...17
Supported Devices..17
Connection and Communication Accessories..................................18

FREE Studio Plus Basics ..21
Creating Projects with FREE Studio Plus ..21
Developing Programs with FREE Studio Plus..................................22
Operating Modes ..22

Software Interface ..24
Overview..24

Welcome Window ...24
Main Window ..24
Project Toolbar..25
Tabs...25
Menu Bars..26
Toolbars ...34
Tool Windows ...34
Status Bar ..35

Software Interface Customization...35
Layout ..35
Toolbars ...36
Tool Windows Management ...37
Window Management..38
Full Screen Mode ..38
Software Options ..39

Managing Projects..41
Create a New Project ..41
Print a Project ...43
Save a Project ..44
Manage Existing Projects ..45
Distribute Projects...46
Export CSV Files ..46
Select The Target Device ..47
Build All..48
Download a Project to The Target...48
Installer Software ..50
Close FREE Studio Plus..50

Configuration ...51
The Configuration Tab...52

Overview of the Configuration Window ...52
Menu Bar ...53
Toolbar...53

Managing Resources Elements ...54

9MA10256.04 3

Overview..54
Resources Window ...54
Supported Protocols..56

Target Device ...57
Modbus Objects..58
Target Menus ...62

Target Menu FREE Evolution/FREE Advance..................................62
Target Menu FREE Smart ..62
Target Menu FREE Optima ..63

I/O Mapping..64
Alarms ...65
Web Site ..66
CAN Expansion Bus..68

CAN Expansion Bus Overview ...68
Using an Expansion Module as CAN Expansion Bus Field
Slave..69
CAN Expansion Bus for FREE Panel EVP.......................................72
CAN Custom Device..73
Using a CAN Custom Device ...74
CAN Expansion Bus Field - Virtual Master Channels........................77

RS-485 ..78
Overview ..78
Using a EVE7500 27 I/O as RS-485 Slave79
Generic Modbus Object Overview...80
Generic Modbus Object Messages ...80
Modbus Custom Devices ...82
Using a Modbus Custom Device...84

Ethernet ...85
Plugins...87

Technical Reference ...89
Modbus Protocol...89

Overview ..89
Data Types ...90
Function Codes...90

Programming ...91
The Programming Tab...92

Overview of the Programming Window ...92
Menu Bar ...94
Toolbars ...95

Project Options... 101
Project Options... 101

General Tab.. 101
Code Generation Tab .. 102
Build Output Tab ... 104
Debug Tab.. 105
Build Events Tab ... 106
Cross Reference Tab... 107
Run-time Checks Tab .. 108
Advanced Tab... 109

Working with Libraries ... 109
Library Manager.. 109

4 9MA10256.04

Exporting to a Library .. 111
Importing from a Library or Another Source 111
Updating Existing Libraries .. 113

Managing Project Elements... 114
Project Window... 114
Program Organization Units... 115

Overview .. 115
Creating a Program ... 115
Creating a Function Block/Function .. 115
Editing POUs .. 116
Source Code Encryption/Decryption ... 117

Variables .. 117
Global Variables.. 118
Local Variables ... 122
Creating Multiple Variables .. 124

Tasks ... 125
Associating a Program to a Task... 125
Task Configuration .. 126

Derived Data Types .. 127
Overview .. 127
Typedefs .. 127
Structures... 129
Enumerations ... 131
Subranges.. 132

Browse the Project.. 133
Overview .. 133
Object Browser ... 134
Search with the Find in Project Command 138

Project Custom Workspace ... 139
Overview .. 139
Enable Custom Workspace Into an Existing Project 140
Workspaces Migration ... 140
Custom Workspace Basic Units.. 141
Custom Workspace Operations.. 141
Workspace Elements with Limitations ... 142

Editing the Source Code ... 143
Overview.. 143
Instruction List (IL) Editor... 143

Overview .. 143
Editing Functions .. 143
Reference to PLC Objects ... 144
Automatic Error Location ... 144
Bookmarks ... 144

Function Block Diagram (FBD) Editor ... 145
Overview .. 145
Creating a New FBD Document.. 145
Adding/Removing Networks... 146
Labeling Networks... 146
Inserting and Connecting Blocks .. 147
Editing Networks ... 149
Modifying Properties of Blocks ... 149

9MA10256.04 5

Getting Information on a Block ... 149
Automatic Error Retrieval ... 149

Ladder Diagram (LD) Editor ... 150
Overview .. 150
Creating a New LD Document .. 150
Adding/Removing Networks... 150
Labeling Networks... 151
Inserting Contacts ... 151
Inserting Coils ... 153
Inserting Blocks .. 154
Editing Coils and Contacts Properties ... 154
Editing Networks ... 155
Modifying Properties of Blocks ... 155
Getting Information on a Block ... 156
Automatic Error Retrieval ... 156
Inserting Variables... 156
Inserting Constants ... 157
Inserting Expression.. 157
Comments.. 157
Branches.. 158

Structured Text (ST) Editor .. 159
Overview .. 159
Creating and Editing ST Objects... 159
Editing Functions .. 159
Reference to PLC Objects ... 160
Automatic Error Location ... 160
Bookmarks ... 160

Sequential Function Chart (SFC) Editor .. 161
Overview .. 161
Creating a New SFC Document.. 161
Inserting a New SFC Element .. 161
Connecting SFC Elements... 162
Assigning an Action to a Step... 162
Specifying a Conditional Transition ... 163
Assigning Conditional Code to a Transition 164
Specifying the Destination of a Jump .. 165
Editing SFC Networks ... 166

Variables Editor .. 166
Overview .. 166
Opening a Variables Editor... 167
Creating a New Variable .. 167
Editing Variables ... 167
Deleting Variables ... 169
Sorting Variables... 170
Copying Variables ... 170
Creating an Error Variable.. 170

Compiling .. 172
Overview.. 172
Compiling the Project .. 172

Overview .. 172
Image File Loading.. 173

6 9MA10256.04

Compiler Output ... 173
Overview .. 173
Compiler Errors... 174

Command-Line Compiler... 175
Launching the Application ... 176

Overview.. 176
Setting Up the Communication... 176

Overview .. 176
Saving the Last Used Communication Port.................................... 181

Connect to a Device.. 181
On-Line Status ... 182

Connection Status... 182
Project Status ... 182

Downloading the Application.. 183
Control the PLC Execution... 184

Simulation.. 186
Simulation Function .. 186

Overview .. 186
Simulation Environment Components ... 187

Simulation Operating Modes.. 187
Simulation with FREE Studio Plus .. 188
Simulation Interface .. 189

Simulation Interface Overview.. 189
Control Panel.. 190
Target Panel ... 190
I/O Panels .. 191
I/O Panels List .. 193

Debugging ... 194
Overview.. 194
Watch Window.. 194

Overview .. 194
Opening and Closing the Watch Window....................................... 195
Adding Items to the Watch Window... 195
Removing a Variable ... 197
Refreshment of Values .. 197
Changing the Format of Data ... 198
Working with Watch Lists ... 199
Autosave Watch List.. 199

Oscilloscope... 200
Overview .. 200
Opening and Closing the Oscilloscope.. 201
Adding Items to the Oscilloscope.. 201
Removing a Variable ... 203
Variables Sampling.. 203
Controlling Data Acquisition and Display 204
Changing the Polling Rate ... 209
Saving and Printing the Graph.. 209

Edit and Debug Mode.. 211
Live Debug... 212

Overview .. 212
SFC Simulation... 212

9MA10256.04 7

LD Simulation ... 213
FBD Simulation... 214
IL and ST Simulation ... 214

Triggers ... 215
Trigger Window... 215
Debugging with Trigger Windows ... 219

Graphic Triggers ... 230
Graphic Trigger Window .. 230
Debugging with the Graphic Trigger Window 235

Language Reference .. 247
Common Elements ... 247

Overview .. 247
Basic Elements ... 247
Elementary Data Types ... 248
Derived Data Types... 249
Literals ... 250
Variables .. 252
Program Organization Units ... 255
Operator and Standard Blocks ... 258

Instruction List (IL) .. 271
Overview .. 271
Syntax and Semantics ... 271
Standard Operators... 272
Calling Functions and Function Blocks.. 273

Function Block Diagram (FBD)... 274
Overview .. 274
Representation of Lines and Blocks.. 274
Direction of Flow in Networks ... 275
Evaluation of Networks .. 275
Execution Control Elements ... 276

Ladder Diagram (LD) .. 278
Overview .. 278
Power Rails .. 278
Link Elements and States .. 278
Contacts... 279
Coils .. 279
Operators, Functions, and Function Blocks 280

Structured Text (ST) .. 280
Overview .. 280
Expressions.. 281
Statements in ST... 282
Assignments... 282
Function and Function Block Statements 283
Selection Statements .. 284
Iteration Statements .. 285

IFDEF Statement to Exclude a Portion of Code 287
Using IFDEF in ST Languages ... 287
Using IFDEF in LD Languages ... 287
Using IFDEF in FBD Languages... 288
IFDEF Supported Format... 289

Sequential Function Chart (SFC).. 289

8 9MA10256.04

Overview .. 289
Steps ... 290
Transitions.. 292
Rules of Evolution ... 292
SFC Control Flags... 296
Check an SFC POU from Other Programs 297

FREE Studio Plus Language Extensions .. 299
Overview .. 299
Macros ... 299
Pointers.. 299
Waiting Statement ... 300

Display... 318
The Display Tab... 319

Overview of the Display Window ... 319
Menu Bar ... 322
Toolbar... 323

Managing Display Elements .. 327
Managing Pages... 327

Pages Overview.. 327
Child Pages .. 328
Pop-up Pages... 330
Basic Page Settings .. 331
Basic Page Operations .. 334

Organization of Created Pages .. 337
HMI Actions Window ... 337
Project Properties ... 338
Frameset.. 339
Multiple Pages Management.. 340
Automatic Documentation.. 341

Insertion of Controls .. 342
Controls ... 342
Static.. 343
Graphic .. 343
Check Box.. 344
Combo Box... 345
Image... 345
Animation ... 347
Edit Box.. 348
Button .. 353
Text Box ... 356
Progress Bar... 357

Editing Control Properties.. 358
Visibility and Updating of Controls .. 358
Page and Object Properties ... 360

Declaration of Variables... 370
Types of Variables ... 370
Data Management... 370
Description of Parameter File ... 372

Using Advanced Features ... 373
Events.. 373
Resources .. 376

9MA10256.04 9

File for Target Description.. 380
Functions and Function Blocks for HMI .. 385

Functions for HMI ... 385
Function Blocks for HMI .. 395

Commissioning.. 405
The Commissioning Tab ... 406

Overview of the Commissioning Window .. 406
Menu Bar ... 407
Toolbar... 407

Managing Commissioning Elements .. 409
Overview.. 409

Commissioning Window .. 409
Read and Write BIOS Parameters .. 410

Target Device ... 412
Overview .. 412
General .. 412
Communication... 412
Information ... 413
Download Settings .. 414
Other Operations .. 414

Debugging ... 416
Overview.. 416
Commissioning Watch Window.. 416
Commissioning Oscilloscope Window .. 417

Appendices .. 418
Installer Pro Project .. 419

Overview.. 419
Compatibility Range.. 419
Installer Pro Project Features... 420

PLC Parameters Navigation Tree ... 421
I/O Definition... 421
Softscope ... 427
Automatic Generation of Expansion Code 430

Televis Driver Generation .. 433
Overview.. 433
Configuration Page Layout .. 434

EEPROM Parameters ... 435
Status Variable.. 436
BIOS Parameters .. 439
Custom Dictionaries .. 439
Televis Command Configuration... 440

Projects Outputs ... 440

Glossary ... 441

Index ... 447

10 9MA10256.04

Safety Information
Important Information

Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, service, or maintain it. The
following special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

Please Note
Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric or
Eliwell for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an
electrical hazard exists which will result in personal injury if the instructions are not
followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards. Obey all safety messages that follow this symbol to avoid possible injury or
death.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious
injury.

! DANGER

WARNING indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

WARNING!

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

CAUTION!

NOTICE is used to address practices not related to physical injury.

NOTICE

9MA10256.04 11

Safety Information

About the Book
Document Scope

This document describes how to use the FREE Studio Plus software to configure,
program, and commission applications for supported logic controllers.

Validity Note
The information in this document is applicable only for FREE Studio Plus
products.

This document has been updated for the release of FREE Studio Plus V1.6.0.

Related Documents
Title of documentation Reference number

FREE Smart Logic Controller 9MA10251

FREE Advance Logic Controller 9MA10291

EWCM 9000 PRO (HF) CRCTA-00

FREE Advance 7/18 IO - Instruction Sheet 9IS54609

FREE Advance 28/42 IO - Instruction Sheet 9IS54473

FREE Advance 28/42 IO isolated - Instruction Sheet 9IS54655

FREE EVE6000/EVE10200 Expansion Module 12/28 IO - Instruction Sheet 9IS54578

FREE AVP1000 Display Color Touchscreen - Instruction Sheet 9IS54479

FREE AVP1000 Display Color Touchscreen Flush Mounting - Instruction Sheet 9IS54608

FREE AVK1000000500 Monochrome Display - Instruction Sheet 9IS54800

FREE EVS Plugin - Instruction Sheet 9IS54405

EWCM 9000 PRO (HF) - Instruction Sheet 9IS54760

FREE Optima - Instruction Sheet 9IS5487300

FREE Optima Logic Controller - Hardware Guide 9MA10312

You can download these technical publications, the present document and other
technical information from our website www.eliwell.com.

12 9MA10256.04

About the Book

https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1207
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1778
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=2127
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1462
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1219
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1879
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1452
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1451
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=1461
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=2123
https://www.eliwell.com
https://www.eliwell.com/download/downloader.php?cat=prd_docs&id=2042
https://www.eliwell.com/

Product Related Information

WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential failure

modes of control paths and, for certain critical control functions, provide a
means to achieve a safe state during and after a path failure. Examples of
critical control functions are emergency stop and overtravel stop, power
outage and restart.

• Separate or redundant control paths must be provided for critical control
functions.

• System control paths may include communication links. Consideration must
be given to the implications of unanticipated transmission delays or failures
of the link.

• Observe all accident prevention regulations and local safety guidelines.1

• Each implementation of this equipment must be individually and thoroughly
tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

1 For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety
Guidelines for the Application, Installation, and Maintenance of Solid State
Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction
and Guide for Selection, Installation and Operation of Adjustable-Speed Drive
Systems" or their equivalent governing your particular location.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Eliwell for use with this equipment.
• Update your application program every time you change the physical

hardware configuration.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Terminology Derived from Standards
The technical terms, terminology, symbols and the corresponding descriptions in
the information contained herein, or that appear in or on the products themselves,
are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may
include, but is not limited to, terms such as safety, safety function, safe state, fault,
fault reset, malfunction, failure, error, error message, dangerous, etc.

Among others, these standards include:

Standard Description

IEC 61131-2:2007 Programmable controllers, part 2: Equipment requirements and tests.

ISO 13849-1:2023 Safety of machinery: Safety related parts of control systems.

General principles for design.

EN 61496-1:2013 Safety of machinery: Electro-sensitive protective equipment.

Part 1: General requirements and tests.

ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment
and risk reduction

EN 60204-1:2006 Safety of machinery - Electrical equipment of machines - Part 1: General
requirements

9MA10256.04 13

About the Book

Standard Description

ISO 14119:2013 Safety of machinery - Interlocking devices associated with guards -
Principles for design and selection

ISO 13850:2015 Safety of machinery - Emergency stop - Principles for design

IEC 62061:2021 Safety of machinery - Functional safety of safety-related electrical,
electronic, and electronic programmable control systems

IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: General requirements.

IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.

IEC 61508-3:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

IEC 61784-3:2021 Industrial communication networks - Profiles - Part 3: Functional safety
fieldbuses - General rules and profile definitions.

2006/42/EC Machinery Directive

2014/30/EU Electromagnetic Compatibility Directive

2014/35/EU Low Voltage Directive

In addition, terms used in the present document may tangentially be used as they
are derived from other standards such as:

Standard Description

IEC 60034 series Rotating electrical machines

IEC 61800 series Adjustable speed electrical power drive systems

IEC 61158 series Digital data communications for measurement and control – Fieldbus for
use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description
of specific hazards, and is defined as it is for a hazard zone or danger zone in the
Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific
products cited in the present documentation. For more information concerning
the individual standards applicable to the products described herein, see the
characteristics tables for those product references.

14 9MA10256.04

About the Book

Getting Started with FREE Studio Plus
What’s in This Part

Getting Started with FREE Studio Plus...16
Software Interface ..24
Managing Projects ...41

9MA10256.04 15

Getting Started with FREE Studio Plus
What’s in This Chapter

Introduction to FREE Studio Plus..16
System Requirements and Supported Devices ..17
FREE Studio Plus Basics...21

Introduction to FREE Studio Plus

Overview
The FREE Studio Plus software makes it possible to create and customize IEC
61131-3 programs for various types of applications. You can download FREE
Studio Plus from Eliwell web site download center. It is intended for applications in
HVAC&R.

Features
FREE Studio Plus is an IEC 61131-3 Integrated Development Environment
supporting the whole range of languages defined in the standard.

In order to support the user in the activities involved in the development of an
application, FREE Studio Plus includes:

• Textual source code editors programming languages:
◦ Instruction List (IL) , page 271
◦ Structured Text (ST), page 280

• Graphical source code editors programming languages:
◦ Ladder Diagram (LD), page 278
◦ Function Block Diagram (FBD), page 274
◦ Sequential Function Chart (SFC), page 289

• A compiler, which translates applications written according to the IEC
standard directly into object code, avoiding the need for a run-time interpreter,
thus making the program execution as fast as possible.

• A communication system which allows the download of the application to the
target environment.

• A set of debugging tools, ranging from an easy-to-use watch window to more
powerful tools, which allows the sampling of fast changing data directly on the
target environment.

FREE Studio Plus Software Component
FREE Studio Plus allows you to:

• Create and manage libraries, applications, and diagnostics
• Manage previously developed projects, upload/download projects, and

modify device parameters from a communication port
FREE Studio Plus is divided into four tabs:

• Configuration
• Programming
• Display
• Commissioning

16 9MA10256.04

Getting Started with FREE Studio Plus

https://www.eliwell.com/

For more information about the tabs of FREE Studio Plus, refer to Tabs, page 25.

System Requirements and Supported Devices

System Requirements

Overview
FREE Studio Plus can be installed on a personal computer having the following
characteristics.

Operative System:
• Windows 10 64 Bit
• Windows 11 64 Bit

Hardware requirements:
• Processor Pentium 1.6 GHz or later
• RAM Memory 1 GB; 2 GB preferred
• Hard Disk 1 GB of free space
• Peripherals Mouse or compatible pointing device
• Peripherals USB interface
• Web access: Web registration requires Internet access

FREE Studio Plus requires Administrator rights to be installed.

For further information, contact your Eliwell support center.

Supported Devices

Logic Controllers
For more information about the logic controllers, refer to the following hardware
guides:

Reference Description Hardware Guide

FREE Optima FREE Optima Logic Controller FREE Optima Logic Controller –
Hardware Guide

AV•••••••5•500 FREE Advance AV••••••5•500 Logic Controller FREE Advance Logic Controller -
Hardware Guide

AV••••••6•500 FREE Advance AV••••••6•500 Logic Controller

SMP•••• / SMD•••• /SMC•••• FREE Smart Logic Controller FREE Smart Logic Controller -
Hardware Guide

EV•7500 FREE Evolution Logic Controller FREE Evolution Logic Controller -
Hardware Guide

EWCM 9000 PRO (HF) EWCM 9000 PRO (HF) Logic Controller EWCM 9000 PRO - User Guide

Expansion Modules
For more information about the expansion modules and their compatibility, refer to
the following hardware guides:

Reference Description Hardware Guide

SME4500 FREE Smart Expansion SME4500 FREE Smart Logic Controller -
Hardware Guide

SME3200 FREE Smart Expansion SME3200

9MA10256.04 17

Getting Started with FREE Studio Plus

Reference Description Hardware Guide

SME5500 FREE Smart Expansion SME5500

EVE4200 FREE Expansion EVE4200 FREE Evolution Logic Controller -
Hardware Guide

EVE7500 FREE Expansion EVE7500

EVE6000000500 FREE Expansion EVE6000 FREE Advance Logic Controller-
Hardware Guide

EVE1020000500 FREE Expansion EVE10200

EP4000000B0 EWCM Expansion EP4000 EWCM 9000 - Hardware Guide

Electronic Expansion Valve Driver
For more information about the electric expansion valve drivers and their
compatibility, refer to the following guide:

Reference Description Hardware Guide

EVEVD••000500 FREE EVEVD Electronic Expansion Valve Driver FREE EVEVD Electronic Expansion
Valve Driver - Hardware Guide

Displays
For more information about the displays and their compatibility, refer to the
following hardware guides:

Reference Description Hardware Guide

OTDLED FREE Optima Remote Display LED FREE Optima Logic Controller –
Hardware Guide

AVP100G0P0500 FREE_AVP Color Touchscreen remote display flush mounting
white

FREE Advance Logic Controller -
Hardware Guide

AVP100W0P0500 FREE_AVP Color Touchscreen remote display flush mounting
gray

AVP11000W0500 FREE_AVP Color Touchscreen remote display vertical
mounting with built-in temperature sensor

AVP12000W0500 FREE_AVP Color Touchscreen remote display vertical
mounting with built-in temperature and humidity sensors

AVP13000W0500 FREE_AVP Color Touchscreen remote display vertical
mounting with built-in temperature, humidity, and presence
(PIR) sensors

AVK1000000500 FREE AVK1000 Monochrome Display Graphic

SKP10 FREE Smart Display SKP10 FREE Smart Logic Controller -
Hardware Guide

SKP22 FREE Smart Terminal SKP22

SKW22 FREE Smart Wall thermostat without backlight SKW22

SKW22L FREE Smart Wall thermostat with backlight SKW22L

EVK1000 FREE Evolution Terminal EVK1000 FREE Evolution Logic Controller -
Hardware Guide

Connection and Communication Accessories

Overview
Several connection and communication accessories may be required to connect
the target to a PC.

18 9MA10256.04

Getting Started with FREE Studio Plus

Connection to the PC allows you to debug, commission, download and upload
your application.

WARNING
AUTOMATIC RESTART OF CONTROLLER
• Do not download your application without first accessing the state of your

machine or process.
• Do not download your application without first ascertaining that there is no

risk of injury to anyone in or around your machine or process.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

FREE Smart PC Connection
FREE Smart can be connected to a PC through the USB/TTL-I2C hardware
interface:

• Use the software itself.
• Connect to the target device in order to control it.
• Connect to the Programming Stick component.

The Programming Stick is a memory support, which allows to:
• Update the firmware of the target device.
• Update the controller application of the target device.
• Update the parameter values of the target device.
• Upload the parameter values from the target device.

The following connection cables are available:
• “Yellow” cable with JST – molex terminals.
• “Blue” cable with JST – JST terminals.
• USB-A/A extension lead, 2 m.

FREE Advance PC Connection
FREE Advance can be connected to a PC through the USB port and a USB cable:

• Type Mini-B USB (DEVICE). Used to connect AV••••••6•500 / AV•••••••5•500
to a PC via Mini-B/A USB cable for debugging, commissioning, downloading,
and uploading with FREE Studio Plus.

• Type micro-B USB (DEVICE). Used to connect AVP1•0•••0500 to a PC via
micro-B/A USB cable for debugging, commissioning, downloading, and
uploading with FREE Studio Plus.

Alternatively, the type A USB (HOST) port of the controller can be used to connect
a USB memory key drive to download the application.

The AV••••••6•500 / AV•••••••5•500 can also be supplied through the USB cable
with limited functionalities related to debugging, commissioning, downloading and
uploading with FREE Studio Plus.

For more details, refer to FREE Advance Logic Controller- Hardware Guide.

EWCM 9000 PRO PC Connection
EWCM 9000 PRO (HF) can be connected to a PC through the USB port and a
USB cable:

9MA10256.04 19

Getting Started with FREE Studio Plus

• Type Mini-B USB (DEVICE). Used to connect EWCM 9000 PRO (HF) to a PC
via Mini-B/A USB cable for debugging, commissioning, downloading, and
uploading with FREE Studio Plus.

• Type micro-B USB (DEVICE). Used to connect EWCM 9000 PRO (HF) to a
PC via micro-B/A USB cable for debugging, commissioning, downloading,
and uploading with FREE Studio Plus.

Alternatively, the type A USB (HOST) port of the controller can be used to connect
a USB memory key drive to download the application.

The EWCM 9000 PRO (HF) can also be supplied through the USB cable with
limited functionalities related to debugging, commissioning, downloading and
uploading with FREE Studio Plus.

For more details, refer to EWCM 9000 PRO - User Guide EWCM 9000 PRO -
User Guide.

FREE Evolution PC Connection
FREE Evolution can be connected to a PC through the USB port and a USB
cable:

• Type A USB (HOST). Used to connect a USB memory key drive when
downloading the application, and to export if the application running on the
PLC supports this feature.

• Type Mini-B USB (DEVICE). Used to connect FREE Evolution to a PC via
Mini-B/A USB cable for debugging, commissioning, downloading, and
uploading with FREE Studio Plus.

FREE Optima PC Connection
FREE Optima can be connected to a PC through the USB port and a USB cable:

USB (Type C). Used to connect FREE Optima to a PC via USB (Type A) / USB
(Type C) cable for debugging, commissioning, downloading, and uploading with
FREE Studio Plus.

Alternatively, the USB (Type C) port of the controller can be used to connect a
USB (Type C) memory key drive to download the application.

For more details, refer to FREE Optima Logic Controller – Hardware Guide.

FREE Evolution/FREE Advance Programming Converters
To communicate with the controller, you can also use an USB/RS-485 adapter
TSXCUSB485 with cable VW3A83O6D3O.

Alternatively, if there is an RS-232 serial port, FREE Evolution/FREE Advance can
be connected to the PC using an RS-485/RS-232 adapter.

FREE Evolution/FREE Advance Communication Modules
A wide range of communication modules allows integration with industrial
systems, BMS, and Ethernet networks.

NOTE: Not available with FREE Panel EVP.
For more details, refer to communication modules description, page 87.

20 9MA10256.04

Getting Started with FREE Studio Plus

FREE Studio Plus Basics

Creating Projects with FREE Studio Plus

Overview
FREE Studio Plus is a graphical programming tool designed to configure, develop,
and commission programs for logic controllers.

FREE Studio Plus Terminology
FREE Studio Plus uses the following terms:

• Project: A FREE Studio Plus project contains:
◦ The developer and purpose of the project.
◦ The configuration of the logic controller and associated expansion

modules targeted by the project.
◦ The source code of a program, symbols, comments, documentation, and

the other related information.
• Application: Contains the parts of the project that are downloaded to the

logic controller, including the compiled program and hardware configuration.
• Program: The compiled source code that runs on the logic controller.
• POU (Program Organization Unit): The reusable object that contains a

variable declaration and a set of instructions used in a program.
• Target: Device connected to the PC.

9MA10256.04 21

Getting Started with FREE Studio Plus

Developing Programs with FREE Studio Plus

Introduction
The following diagram presents the typical stages of developing a project in FREE
Studio Plus:

Operating Modes

Introduction
The operating modes provide control to develop, debug, monitor, and modify the
application when the controller is connected or not connected to FREE Studio
Plus.

FREE Studio Plus can operate in the following modes:
• Offline mode
• Online mode
• Simulator mode

Business
Specifications &
Requirements

Configuration

Programming
and/or
Display

Commissioning

Select & assemble
hardware

Set hardware
settings

Define I/O and
objects

Create & organize
POUs

Create & organize
display pages

Define Targets
(Discover through
Ethernet & USB)

Program
Download/Upload

Read and edit
parameters

Simulate targets

Configure

Program

Deploy

Produce

Debugging in
online mode

Debugging in
simulator mode

22 9MA10256.04

Getting Started with FREE Studio Plus

Offline Mode
FREE Studio Plus operates in offline mode when no physical connection to a logic
controller has been established.

In offline mode, you configure FREE Studio Plus to match the hardware
components you are targeting, then develop your application.

Online Mode
FREE Studio Plus operates in online mode when a logic controller is physically
connected to the PC.

In online mode, you can download your application to the logic controller.
Downloading and uploading application is not possible in the simulator mode.
FREE Studio Plus then synchronizes the application in the PC memory with the
version stored in the logic controller, allowing you to debug, monitor, and modify
the application.

WARNING
AUTOMATIC RESTART OF CONTROLLER
• Do not download your application without first accessing the state of your

machine or process.
• Do not download your application without first ascertaining that there is no

risk of injury to anyone in or around your machine or process.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

You can modify certain elements of a program in online mode. For example, you
can add or delete rungs, or modify the values of certain function block parameters.

NOTE: Online program modifications are subjected to the predefined
configuration. For more information, refer to Live Debug, page 212 and
Triggers, page 215.

Simulator Mode
FREE Studio Plus operates in simulator mode when a connection has been
established with a simulated logic controller. In simulator mode, no physical
connection to a logic controller is established; instead FREE Studio Plus simulates
a connection to a logic controller and the expansion modules to run and test the
program.

For more information, refer to Simulation, page 186.

9MA10256.04 23

Getting Started with FREE Studio Plus

Software Interface
What’s in This Chapter

Overview ..24
Software Interface Customization ...35

Overview

Welcome Window
The Welcome window is always displayed when you launch FREE Studio Plus.
Use this window to select and open an existing project or create a project, page
41.

Main Window
The FREE Studio Plus main window provides access to menus and commands,
windows, and toolbars.

The illustration presents the FREE Studio Plus main window:

Item Description

1 Project toolbar, page 25

2 Tabs, page 25

3 Menu bar, page 26

4 Toolbars, page 34

5 Workspace, page 35

6 Editor window

Free Studio Plus
Configuration Programming Display Commissioning

Preprocessing display completed.
Preprocessing Pumping completed.
Preprocessing Communication completed.
Preprocessing Application completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

Ready EDIT MODE NOT CONNECTED....

Catalog

Device name Version

Resources

FREEADVANCE CONFIGURATION

File View Project On-line HelpDeveloper

Resources

Configuration
FreeAdvance

Modbus objects

I/O Mapping
Menus

Web Site
BACnet Objects

LON Profile

Plugins
Ethernet
RS485-2
RS485-1
CAN Exp bus

Alarms

EEPROM Parameters

BIOS Parameters
Enums

Field

Device
Analog Value Objects
Binary Value Objects
Calendar Objects
Multi State Value Objects

Notification Class Objects
Schedule Objects

Local

Status variables

C:\My Project\My Project.plcprj

ExportData export

8 577

4 3 2 6 71

24 9MA10256.04

Software Interface

Item Description

7 Tool windows, page 34

8 Status bar, page 35

Project Toolbar
The project toolbar is located at the top left of the main window which provides
access to the main commands using icons:

Icon Description

New project: creates a new project, any opened project must be closed. If the project
is not saved, a dialog box asks to save the project.

For more information, refer to Create a New Project, page 41.

Open project: opens a project saved on your computer.

For more information, refer to Open an Existing Project, page 45.

Save project: saves modifications to the current project.

For more information, refer to Save a Project, page 44.

Build all: compiles your project.

For more information, refer to Build All, page 48.

Download all: downloads onto the target.

For more information, refer to Download and Upload Applications, page 48.

Tabs
FREE Studio Plus consists of four development environments for programming
controllers:

• Configuration, page 51
For creating networks. It is the entry point of the software.

• Programming, page 91
For creating and managing libraries, controller applications and diagnostics.
It includes a Simulation mode, page 186, dedicated to software developers,
for running and testing controller applications without a logic controller and
expansion modules physically connected.

• Display, page 318
For creating the graphical interface on built-in displays and remote displays.

• Commissioning, page 405
For downloading the project to the connected logic controller device and
modifying device parameters from a serial port.

9MA10256.04 25

Software Interface

Menu Bars

Overview
FREE Studio Plus has several different menus. Most of them depend on the
context. They may or may not appear depending on the tab or the action you are
performing.

Tab Menu

All File, page 28

View, page 33

Help, page 28

Partially common Edit, page 27

Project, page 30

On-line, page 29

Options, page 29

Window, page 34

Configuration Developer, page 27

Programming Debug, page 26

Scheme, page 31

Variables, page 32

Tools, page 32

Display Page, page 29

Commissioning Parameters, page 30

Recipes, page 31

Target, page 32

Debug Menu

Command Icon Key Description

Simulation mode - Open/close the integrated simulation environment.

Start/Stop watch value - Starts or stops (toggle) the evaluation of the symbols added in the watch
window.

Add symbol to watch - F8 Adds a symbol to the Watch window.

Inserts new item into watch Shift+F8 Inserts a new item into the Watch window.

Add symbol to a debug
window

- F10 Adds a symbol to a debug window.

Inserts new item into a
debug window

- Shift+F10 Inserts a new item into a debug window.

Quick watch symbol - F11 View and force the value of the selected symbol.

Live debug mode - If debug mode is running, starts or stops (toggle) the live debug mode.

Add/remove text trigger F9 Adds/removes a text trigger.

Add/remove
graphic trigger

Shift+F9 Adds/removes a graphic trigger.

26 9MA10256.04

Software Interface

Command Icon Key Description

Remove all
triggers

Ctrl+Shift+F9 Removes the active triggers.

Trigger list Ctrl+I Lists the active triggers.

Run - Restarts program after a breakpoint is hit.

Add/Remove
breakpoint

F12 Adds or removes a breakpoint.

Remove all
breakpoints

- Removes the active breakpoints.

Breakpoint list - Lists the active breakpoints.

Change current instance - - Changes the current function block instance (live debug mode).

Developer Menu
This menu gives access to features allowing you to share your project with other
developers:

Command Icon Key Description

Data export - - Export data to a CSV file, page 46.

Import EDS - - Import EDS (Electronic Data Sheet) file, page 73.

Run Modbus custom Editor - - Run Modbus custom editor, page 82.

Build Web site - - Generate a website to manage the target device remotely, page 66.

Generate EDE files - - Generates the Engineering Data Exchange (EDE) files in CSV format (in order to
be used by SCADA BACnet supervisor).

Build Televis Driver - - Televis Driver Generation, page 433

Edit Menu
Command Icon Key Description

Undo Ctrl+Z Cancels last action made.

Redo Ctrl+Y Restores the last action canceled by Undo.

Cut Ctrl+X Removes the selected items from the active document and stores them in a
system buffer.

Copy Ctrl+C Copies the selected items to a system buffer.

Paste Ctrl+V Pastes in the active document the contents of the system buffer.

Delete line - Ctrl+E Deletes the whole source code line.

Go to symbol Shift+F12 Goes to variable declaration.

Find in project Ctrl+

Shift+F

Opens the Find in project dialog box.

Bookmarks... - - Allows to manage the existing bookmarks.

9MA10256.04 27

Software Interface

Command Icon Key Description

Add/toggle - Ctrl+F2 Adds a bookmark to mark lines. If a bookmark is already defined, removes it.

Next - F2 Goes to next defined bookmark.

Prev - Shift+F2 Goes to previous defined bookmark.

Remove all - - Removes the defined bookmarks.

Go to line - Ctrl+G Allows user to move to a specific line in the source code editor.

Find… Ctrl+F Asks user to type a string and searches for its first instance within the active
document from the current location of the cursor.

Find next F3 Iterates between the results of the research, found by the Find command.

Replace - Ctrl+H Allows you to automatically replace one or all the instances of a string with
another string.

Insert/Move mode - Toggle between those two editing modes, used to insert or move blocks.

Connection mode - Editing mode which allows user to draw logical wires to connect pins.

Watch mode - Editing mode which allows user to add variables to any debugging tool.

File Menu
This menu gives access to features allowing you to manage your project:

Command Icon Key Description

New project - Creates a new project, page 41.

Open project Ctrl+O Opens an existing project, page 45.

Save project Ctrl+S Saves the current open project., page 44

Save project as… - - Saves the current open project specifying new name, location and extension,
page 44.

Close project - - Closes the open project, page 46.

Options… - - Opens the Program options dialog box, page 39.

Print… Ctrl+P Prints the document of the currently active window, page 43.

Print preview - Creates a preview of the document of the currently active window, ready to be
printed.

Printer setup… - - Opens the Printer setup dialog box.

..recent.. - - Lists a set of recently opened project file.

Exit - - Closes FREE Studio Plus.

Help Menu
This menu gives access to features allowing you to read documentation about
hardware or some specific FREE Studio Plus features:

28 9MA10256.04

Software Interface

Command Icon Key Description

Index - - Lists the Help keywords and opens the related topic.

Context - F1 Context-sensitive help. Opens the topic related to the currently active window.

About... - - Credits and version information.

On-line Menu
Command Icon Key Description

Set up communication... - - Lets you set the properties of the connection to the target, page 176.

Connect - Starts the communication with the device, page 181.

Download code F5 Download the configuration and PLC application of the project to the device, page
183.

Download options… - - Allows to set the properties of the source code downloaded to the target.

Force image upload - - If the target device is connected, allows to upload the image file.

Force debug symbols
upload

- - If the target device is connected, allows to upload the debug symbols file.

Halt - Stops the PLC execution.

Cold restart - Restarts the PLC execution and both retain and non-retain variables are reset.

Warm restart - Restarts the PLC execution and non-retain variables are reset.

Hot restart - Restarts the PLC execution without any reset on variables.

Reboot target - Reboots the target.

Read all logs again - - Reloads the remote logs from target.

Options Menu
This menu gives access to features allowing to manage the commissioning
options:

Command Icon Key Description

Logging options… - - Select what types of information are recorded in the event log.

Refresh interval… - - Set refresh interval for monitor, graph, and auto-refresh (ms).

Page Menu
This menu gives access to features allowing to add objects on pages:

Command Icon Key Description

New Static - Add a new static object.

New Image - Add a new image object.

9MA10256.04 29

Software Interface

Command Icon Key Description

New Animation - Add a new animation object.

New Edit - Add a new edit box.

New Button - Add a new button object.

New Custom Ctrl - Add a new custom control.

New TextBox - Add a new text box.

New Progress - Add a new progress bar.

New Chart - Add a new chart object.

New Trend - Add a new trend object.

Parameters Menu
This menu gives access to features allowing to manage project parameters:

Command Icon Key Description

Read selected - Ctrl+R Read selected value.

Write selected - Ctrl+W Write selected value.

Write default values - - Reset the selected value to default.

Refresh page - - Updates the parameters and their values in the Resources window.

Select all - Ctrl+A Select the parameters from the Resources window

Read all - Ctrl
+Shift+R

Read the values of the Resources window.

Write all - Ctrl
+Shift
+W

Write the values of the Resources window.

Write all default values - - Reset the values of the Resources window to default.

Search parameters… - - Search for a specific parameter using filters.

Connected mode - Ctrl+T Simulates the connection of the target device.

Auto refresh mode - - Changing parameter values in the application are written automatically to the
target device.

Export to text file… - - Export the parameters of the Resources window as a *.csv text file.

Import values from other
project…

- - Apply parameter values from another project to the current project.

Project Menu
This menu gives access to features allowing you to compile your project and to
manage your target device:

30 9MA10256.04

Software Interface

Command Icon Key Description

Compile F7 Launches the compiler, page 48.

Select target... - - Lets you select a new target for the project, page 47.

Refresh current target - - Allows to update the target file for the same version of the target.

Option - - Allows to enable Installer Pro project and/or Televis driver generation
features.

Recipes Menu
This menu gives access to features allowing you to manage recipes:

Command Icon Key Description

Add recipe - - Add a new recipe.

Import recipe - - Import an existing recipe from the hard drive disk or a removable media.

Delete recipe - - Delete the selected recipe.

Export recipe - - Export an existing recipe to the hard drive disk or a removable media.

Set recipe values - - Applying the change in the value of the selected parameter to the value of the
recipe.

Delete parameters from recipe - - Delete one or more selected parameters from the actual recipe folder.

Write all recipe values - - Download the recipes to the target device.

Scheme Menu
Command Icon Key Description

Network - - Adds new networks.

New - - List of new networks.

Top - Adds a new network at the top.

Bottom - Adds a new network at the bottom.

Before - Adds a new network at the before the current selection.

After - Adds a new network at the after the current selection.

Label - - Adds a new network label.

Object - - Adds new objects.

New - - List of new objects.

Function - - Adds a new function.

Function Block - - Adds a new function block.

Variable Shift+V Adds a new variable.

Constant Shift+K Adds a new constant.

Return Shift+R Adds a new return.

Jump Shift+J Adds a new jump.

9MA10256.04 31

Software Interface

Operator - - Adds a new operator.

Comment Shift+M Adds a new comment.

Instance name - - Modifies the name of an instance of a function block.

Open source - Displays the source code of the selected object.

Auto connect - Connects blocks automatically.

Delete invalid connection - Ctrl+M Removes invalid connections of deleted blocks.

Increment pins Ctrl + ‘+’ Increments the number of input pins of some operators and embedded functions.

Decrement pins Ctrl + ‘-’ Decrements the number of input pins of some operators and embedded
functions.

Enable EN/ENO pins E Displays the enable input and output pins.

Object properties - Shows the properties of the selected object.

Target Menu
This menu gives access to features allowing you to set the communication
settings:

Command Icon Key Description

Communication settings - - Select and configure the protocol to use to communicate with the target device.,
page 412

Tools Menu
Command Icon Key Description

Custom tools - - Displays up to 16 user defined commands, page 40.

Variables Menu
Command Icon Key Description

Add - -

Automatic - - Creates a new automatic variable. A dialog is prompted in order to specify the
new variable.

Mapped variable - Ctrl+

Shift+M

Creates a new mapped variable. A dialog is prompted in order to specify the new
variable.

Constant - - Creates a new constant. A dialog is prompted in order to specify the new
constant.

Retain - - Creates a new retain variable. A dialog is prompted in order to specify the new
variable.

Insert - Ctrl+

Shift+Ins

Adds a new row to the grid in the currently active editor.

Delete - Delete Deletes the variable in the selected row of the currently active table.

Create multiple… - - Lets you create a set of multiple variables.

Group - - Opens a dialog box which lets you create and delete groups of variables.

32 9MA10256.04

Software Interface

View Menu
This menu gives access to features allowing you to choose what is displayed in
the workspace:

Command Icon Key Description

Toolbars - - Refer to Toolbars, page 36.

Main - - Shows or hides the Main toolbar.

Project - - Shows or hides the Project bar.

Debug - - Shows or hides the Debug toolbar.

FBD Bar - - Shows or hides the FBD toolbar.

SFC Bar - - Shows or hides the SFC toolbar.

LD Bar - - Shows or hides the LD toolbar.

Network - - Shows or hides the Network toolbar.

Configuration - - Shows or hides the Configuration toolbar.

HMI Page - - Shows or hides the HMI Page toolbar.

HMI Project - - Shows or hides the HMI Project toolbar.

HMI Profiles - - Shows or hides the HMI Profiles toolbar.

Commissioning - - Shows or hides the Commissioning toolbar.

Tool windows - - Refer to Tool Windows Management, page 37.

Local variables - - Shows or hides the Local variables window.

Project - - Shows or hides the Project window.

Watch - Ctrl+T Shows or hides the Watch window.

Properties Window - Ctrl+W Shows or hides the Properties Window window.

Oscilloscope - - Shows or hides the Oscilloscope window.

PLC run-time status - - Shows or hides the PLC run-time status bar.

Operators and blocks - - Shows or hides the Operators and blocks window.

Library Tree - - Shows or hides the Library Tree window.

Output - - Shows or hides the Output window.

Cross Reference - - Shows or hides the Cross Reference window.

Resources - - Shows or hides the Resources window.

Catalog - - Shows or hides the Catalog window.

HMI Project - - Shows or hides the HMI Project window.

HMI Properties - - Shows or hides the HMI Properties window.

HMI Actions - - Shows or hides the HMI Actions window.

HMI Vars and Parameters - - Shows or hides the HMI Vars and Parameters window.

HMI Templates - - Shows or hides the HMI Templates window.

Commissioning - - Shows or hides the Commissioning window.

Commissioning Watch - - Shows or hides the Commissioning Watch window.

Commissioning Oscilloscope - - Shows or hides the Commissioning Oscilloscope window.

Full screen Ctrl+U Expands the currently active document window to fill entire screen,
page 38. (Esc to exit from this mode).

9MA10256.04 33

Software Interface

Window Menu
Command Icon Key Description

Cascade - - Displaces the open documents in cascade so that they completely overlap except
for the caption.

Tile - - The PLC editors area is split into frames having the same dimensions, depending
on the number of currently open documents. Each frame is automatically assigned
to one of such documents.

Arrange Icons - - Displaces the icons of the minimized documents in the bottom left-hand corner of
the PLC editors area.

Close all - - Closes the open documents.

Windows... - Alt+W Opens a Windows List browser.

Toolbars
FREE Studio Plus has several toolbars dedicated to software tabs:

Toolbars Dedicated tabs

Main All

Project Programming, page 95

Debug

FBD

SFC

LD

Network

Configuration Configuration, page 53

HMI Page Display, page 323

HMI Project

HMI Profiles

Commissioning Commissioning, page 407

To manage toolbars, refer to Toolbars Management, page 36.

Tool Windows
FREE Studio Plus has several tool windows dedicated to software tabs:

Tool windows Dedicated tabs

Local variables Configuration, page 51

Project Programming, page 91

Watch

Properties Window

Oscilloscope

PLC run-time status

Operators and blocks

Library Tree

Output Configuration, page 51

Programming, page 91Cross Reference

Resources Configuration, page 51

34 9MA10256.04

Software Interface

Tool windows Dedicated tabs

Catalog

HMI Project Display, page 318

HMI Properties

HMI Actions

HMI Vars and Parameters

HMI Templates

Commissioning Commissioning, page 405

Commissioning Watch

Commissioning
Oscilloscope

To manage tool windows, refer to Tool Windows Management, page 37.

Status Bar

Overview
The status bar is located at the bottom right of the FREE Studio Plus window. It
indicates the state of communication and the status of the application currently
executing on the target device.

For more information, refer to:
• Edit and Debug Mode, page 211
• Connection Status, page 182
• Application Status, page 182

Software Interface Customization

Overview
This section describes how to manage the user interface elements of the software.
It allows you to set up the integrated software environment in the way which best
suits to your specific development process.

Layout

Overview
The layout of the software workspace can be freely customized in order to suit
your needs.

The layout configuration is saved on application exit. Your modifications remain
between different working sessions.

Reset Layout
To reset layout parameters to default values of standard layout:

EDIT MODE SOURCE OK CONNECTED

9MA10256.04 35

Software Interface

Step Action

1 Click File > Options….

The Program options dialog box appears.

2 In Tool windows area, click Reset bars positions button.

A new dialog box appears.

3 Click OK button.

4 In Program options dialog box, click OK button.

5 In the project toolbar, click Save project icon.

6 Click File > Exit.

7 Restart FREE Studio Plus.

NOTE: When you reset the layout, all the tab layouts are reset.

Toolbars

Show/Hide
To show or hide a toolbar, proceed as follow:

Step Action

1 Click View > Toolbars and select

Or right-click in the toolbar area.

2
The toolbar list is displayed in a pop-up window:

3 Click the Toolbar name you want to show/hide.

Move
To move a toolbar, click its left border and drag it to the new destination.

Main

Project

Debug

FBD Bar

SFC Bar

LD bar

Network

Configuration

HMI Page

HMI Project

HMI Profils

Commissioning

36 9MA10256.04

Software Interface

Tool Windows Management

Show/Hide Tool Windows
To show or hide a tool window:

Step Action

1 Click View > Tool windows.

2 Select the toolbar to show or hide

Undock Tool Windows
To undock a tool window from its default location, click its title bar and drag it to a
new location.

To take back a tool window to its last docked location, double-click the title bar of
the window.

Dock Tool Windows
To dock a tool window to another location:

Step Action

1 Click the title bar of the tool window and move the pointer.

A guide diamond appears, move the pointer over the desired portion of the guide
diamond. The designated area is shaded.

2 Release the mouse button.

9MA10256.04 37

Software Interface

Auto-Hide Tool Windows
To auto-hide a tool window, click the pin button on the top right corner of the tool
window.

The tool window is reduced in a tab on the upper left corner of the main window.

To show the tool window again, click the tab.

To switch the tool window from auto-hide mode to regular docking mode, reclick
the pin button when the tool window is displayed.

Window Management

Overview
FREE Studio Plus allows you to navigate between the opened source code editor
windows.

Document Tab
To switch between the currently open editors, click the title program on the tab
located below the programming window.

Window Menu
The Window menu allows you:

• To present the currently opened programs in a cascade.
• To present the currently opened programs in tiles.
• To arrange the icons of the minimized documents in the bottom left-hand

corner of the editors window.
• To close the currently opened programs.
• To switch between the currently opened programs by clicking the title

program.

Full Screen Mode

Overview
To switch on or off the full screen mode, click View > Full screen (or press Ctrl
+U).

In full screen mode, the source code editor extends to the whole working area,
making the coding with graphical programming languages easier.

Window

1 main

Cascade

Tile

Arrange Icons

Close All

2 Ungrouped_vars

Windows… Alt+W

38 9MA10256.04

Software Interface

Software Options

Overview
FREE Studio Plus allows you to customize some options of the software.

To display the dialog box options, click File > Options….

General
General tab allows you to configure:

• Visual Theme:
It is just possible to choose, in the Color theme list, the Standard color
theme.

• Save options:
◦ Autosave: if Autosave box is checked, the software periodically saves

the whole project. You can specify the period of execution of this task by
entering the number of minutes between two automatic savings in Interval
(min) box.

◦ Max previous version to keep: it indicates the maximum number of
copies of the project that must be zipped and stored in the
PreviousVersions folder.

• Output window:
You can specify the family and the size of the font used for output window.

• Communication:
If Use last port check box is selected, the last used port is set as the default
one.

• Tooltip:
If Enable tooltip on editors check box is selected, small information boxes
appear when the cursor is placed over a symbol in the editors.

• Tool windows:
You can specify the family and the size of the font used for tool windows.
Reset bars positions: the layout of the dock bars in the IDE is reinitiate to
default positions and dimensions. In order to take effect, the software must be
restarted.

• Source editors options:
If ST - LD: Auto declaration of variables check box is selected, variables
are automatically declared for ST and Ladder programs.

Graphic Editor
This panel lets you edit the properties of the LD, FBD, and SFC source code
editors.

You can specify the family and the size of the font used for graphical editors.

You can also modify the colors of the graphical object.

Text Editors
You can specify the family and the size of the font both for code and variable
editors.

9MA10256.04 39

Software Interface

Language
You can modify the language of the environment:

Step Action

1 Select a language from the list displayed in this panel.

2 Click the Select button.

3 Click the OK button to confirm.

4 To make effective this modification, restart the software.

Custom Tools
You can add up to 16 commands to the Custom tools menu. These commands
can be associated with any program that runs on your operating system. You can
also specify arguments for any command that you add to the Custom tools
menu.

To add a tool to the Custom tools menu:

Step Action

1 In the Command box, type the full path of the program file you want to use as a tool.

Otherwise, you can select the program file by clicking the browse button.

2 In the Arguments box, type the arguments - if any - to be passed to the executable
command mentioned at the first step. They must be separated by a space.

3 In Menu string box, type the name you want to give to the tool you are adding.

This is the string that is displayed in the Tools menu.

4 Click Add button to insert the new command into the suitable menu.

5 Click OK button to confirm, or Cancel button to quit.

For example, if you want to add Windows Calculator to the Custom tools menu:

Step Action

1 Fill the fields of the dialog box as displayed.

2 Click Add button.

The name you gave to this tool (in this example, Calc) is now displayed in the Custom
tools menu.

Merge
If Enable Merge check box is selected, you can configure the following
parameters:

• Identical name:
◦ Objects with different types
◦ Object with same type (not variables)
◦ Variables

• Check address:
◦ Overlapped
◦ Copy\Paste mapped variable

For more information about Merge, refer to Merge Function, page 112.

40 9MA10256.04

Software Interface

Managing Projects
What’s in This Chapter

Create a New Project...41
Print a Project ...43
Save a Project...44
Manage Existing Projects...45
Distribute Projects ...46
Export CSV Files...46
Select The Target Device ..47
Build All ..48
Download a Project to The Target ...48
Installer Software ..50
Close FREE Studio Plus ..50

Create a New Project

Overview
There are two ways to create a new project:

• In the Welcome page, page 41.
• In the New project window, page 43.

Welcome Page
When FREE Studio Plus starts, the Welcome page appears:

The Welcome page is divided into three group boxes:
• New project
• Open project
• Import old project

To create a new project:

9MA10256.04 41

Managing Projects

Step Action

1 In Name box, type the name of the new project.

The string you enter is also the name of the folder which contains the files making up the
project.

The name can be modified afterward, refer to Project Options, page 101.

2 In the Directory box, the default location of this folder is indicated.

Click the browse button to choose another folder.

3 In the device list, click the target device which runs the project.
NOTE: Available targets are listed in Supported Devices, page 17.

4 If Case-sensitive check box is selected, the source code of the project is case-sensitive.

This option can be modified afterward, refer to Project Options, page 101.
NOTE: This option is not compliant with IEC 61131-3 standard.

5 Click Create button.

To open an existing project, use one of the two procedures:
• Click Choose from disk... button.

Result: A dialog box to appear, which lets you load the directory containing
the project and select the relative project file.

• In the Recent projects list, double-click the project name.
To import an old project:

• Click Choose from disk... button.
Result: A dialog box appears, which lets you load the directory containing the
project and select the relative project file.
The "old project" is one created with FREE Studio. FREE Studio Plus will
proceed to convert the old program. However, incompatibilities may exist
between FREE Studio and FREE Studio Plus.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Always verify that your application program operates as it did prior to the

conversion, having all the correct configurations, parameters, parameter
values, functions, and function blocks as required.

• Modify the application as necessary such that it conforms to its previous
operation.

• Thoroughly test and validate the newly compiled version prior to putting your
application into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

42 9MA10256.04

Managing Projects

New Project Window

Click File > New project or File icon of the project toolbar to display the New
project window:

NOTE: If you already have an open project, a dialog box appears to ask you if
you want to save the current project.

Create a new project:

Step Action

1 In Name box, type the name of the new project.

The string you enter is also the name of the folder which contains the files making up the
project.

The name can be modified afterward, refer to Project Options, page 101.

2 In the Directory box, the default location of this folder is indicated.

Click the browse button to choose another folder.

3 In the Select the target for a new project list, click the target device which runs the
project.

NOTE: Available targets are listed in Supported Devices, page 17.

4 If Case-sensitive check box is selected, the source code of the project is case-sensitive.

This option can be modified afterward, refer to Project Options, page 101.
NOTE: This option is not compliant with IEC 61131-3 standard.

5 Click OK button.

Print a Project

Print the Project
FREE Studio Plus allows you to print the data which make up the project such as
programs and variables.

To print a project:

Step Action

1 In Programming tab, click File > Print Project.

2 In Name box, select the printer to print your project.

3 Click OK button.

9MA10256.04 43

Managing Projects

Print the Current Working Window
FREE Studio Plus allows you to print only the current working window.

To print the current working window:

Step Action

1 In Programming tab, click File > Print….

2 In Name box, select the printer to print your project.

3 Click OK button.

Print Preview
To preview your printing before, click File > Print preview. The preview is
displayed in the current working window.

Save a Project

Overview
FREE Studio Plus projects can be saved as files to the local PC or into a server
directory. This file has the extension *.plcprj or *.ppjs and contains:

• The source code of the program.
• The current hardware configuration.
• Settings and preferences of the FREE Studio Plus project.

Save the Project
To save the project:

• Click Save project icon on the project toolbar.
• Click File > Save project.

Save the Project As
To save the project with a different name, a different format or in a different folder:

Step Action

1 Click File > Save project As ….

2 Type the new name of the project file.

3 Browse and select the new folder in which to store the project file.

4 Choose the new format, page 46 of the project file.

5 Click OK button.

44 9MA10256.04

Managing Projects

AutoSave
FREE Studio Plus includes an AutoSave feature that periodically saves your
project as you work on it.

AutoSave saves data in a separate folder, called Backup, stored at the same
location of the project folder.

If you regularly save or close the currently opened file, the associated auto save
file is deleted, unless the save file command is canceled or terminated in error. In
this case, the file is kept. If you reopen a project for which an appropriate auto
save file is found, the AutoSave Backup dialog box is displayed. You can reopen
the auto save project or the saved last version.

You can specify the interval time (in minutes) between saving. By default,
AutoSave is running with 1 minute of interval. For more information, refer to Save
options, page 39.

Backup Copies
FREE Studio Plus includes a backup feature of the previous version of the project
on which you are working.

When you explicitly save the project, FREE Studio Plus saves the current version
(before save) of the project in the PreviousVersions folder stored at the same
location of the project folder.

You can set the upper limit of the backup files to be kept on your PC. By default
this is 10; set to 0 if you want to disable this feature. For more information, refer to
Save options, page 39.

Manage Existing Projects

Open an Existing Project
To open an existing project, click File > Open project.

You can also open an existing project in the Welcome page (when no project is
opened).

This causes a dialog box to appear, which lets you load the directory containing
the project and select the relative project file.

Edit the Project
To modify an element of a project:

Step Action

1 Locate the element in the tree structure of the tool window.

2 Double-click its name to open it.

Result: An editor consistent with the object type is opened. For example, when you
double-click the name of a project POU, the appropriate source code editor is
displayed; if you double-click the name of a global variable, the variable editor is
displayed.

FREE Studio Plus cannot modify elements of a project when at least one of the
following conditions holds:

• FREE Studio Plus is in debug mode.

9MA10256.04 45

Managing Projects

• It is an object of an included library (whereas you can modify an object that
you imported from a library).

• The project is opened in read-only mode (view project).

Close the Project
To close the project, click File > Close project or close the software.

In both cases, when there are modifications which have not been saved, FREE
Studio Plus asks you to choose between saving and discarding them.

Then the Welcome page, page 41 is displayed so that you can start a new
working session.

Distribute Projects

Overview
To share a project with another developer, send either a copy of one or more
project files or a redistributable source module (RSM) generated by FREE Studio
Plus.

In the former case, the number of files to share depends on the format of the
project file:

• PLC single project file (.ppjs file extension): the project file itself contains
the whole information needed to run the application (assuming the receiving
developer has an appropriate available target device). It includes the source
code modules so that only the .ppjs file is needed to share the project.

• PLC multiple project file (.ppjx or .ppj file extension): the project file
contains only the links to the source code modules composing the project,
which are stored as single files in the project directory. The whole directory is
needed to share the project.

• Full XML PLC project file (.plcprj): the project file is generated entirely in
XML language. The information contained in the project file and its behavior
are the same as .ppjs file extension.

To generate a redistributable source module (RSM), click Project > Generate
redistributable source module.

FREE Studio Plus displays the name of the RSM file and lets you choose whether
to protect the file with a password. To protect the file, a password must be entered.

The advantages of the RSM file format are:
• It is encoded in binary format, thus it can only be read by third parties which

use FREE Studio Plus.
• It can require a password when opening the file in FREE Studio Plus.
• Its size is reduced because it is a binary file.

Export CSV Files

Overview
FREE Studio Plus allows you to export parameters and variables defined in .csv
format which can be used for sharing information and developing documentation
to be supplied with the product.

46 9MA10256.04

Managing Projects

Data Export
To export data:

Step Action

1 Click Configuration tab.

2 In the Resources window, click the target device.

3 In the main box, click Export button.

4 In Data Export window, select data you want to export and click OK button.

5 In the Save As dialog box, choose the name of your file and click Save button.

6 In Export succeeded dialog box, click OK button.

Select The Target Device

Overview
You may need to adapt a PLC application on a new target device which differs
from the one for which you originally wrote the code.

To adapt your application project to a new target device:

Step Action

1 In Programming tab, click Project > Select target….

The following dialog box appears:

2 Select one of the target devices listed in the combo box.

3 Click Change to confirm your choice, Cancel to discard.

4 If you confirm, click Yes button to complete the conversion or No button to quit.

If you click Yes button, FREE Studio Plus updates the project to work with the new target.

It also makes a backup copy of the project files in a subdirectory inside the project
directory. Therefore you can roll back the operation by manually (that is, using Windows
Explorer) replacing the project files with the backup copy.

Select target

Available Targets

AVP Landscape 659.5
AVP Portrait 659.5
FreeAdvance 596.7
FreeAdvance Small 668.7
FreeEvolution EVC 477.27

FreeEvolution EVP 489.20
FreeSmart 412.20
FreeSmart Modbus Master 542.9

FreeEvolution EVD 423.27

Change Cancel

9MA10256.04 47

Managing Projects

WARNING
UNINTENDED EQUIPMENT OPERATION
• Always verify that your application program operates as it did prior to the

conversion, having all the correct configurations, parameters, parameter
values, functions, and function blocks as required.

• Modify the application as necessary such that it conforms to its previous
operation.

• Thoroughly test and validate the newly compiled version prior to putting your
application into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Build All

Overview

To compile your project, click Build All icon in the project toolbar.

The result of the compilation is displayed in the Output window, page 94.

Download a Project to The Target

Overview
A project can be downloaded in different ways depending on the controller.

The following is a table of correspondence indicating possible connection types
with the controllers:

Control-
ler

TTL port USB A
port

USB
Mini-B
port

USB C
port

RS-485
port

Modbus

Ethernet

DMI
program-

ming
cable

MFK
program-

ming
stick

USB A
Memory

key

USB A/
USB

Mini-B
Cable

USB A/
USB C
Cable

USB/RS-
485

adapter

Ethernet
Cable

FREE
Smart

✓ ✓ - - - - -

FREE
Evolution

- - ✓ ✓ - ✓ ✓(1)

A-
V••••••50-
500

- - - ✓ - ✓ ✓(1)

A-
V•••••••6•-
500

- - ✓ ✓ - ✓ ✓

FREE
Optima

- - - - ✓ ✓ -

(1) An Ethernet communication module must be connected to the controller, except for FREE Panel
EVP which has integrated Ethernet communications.

48 9MA10256.04

Managing Projects

Download Controller Project onto Target
Steps to download the project onto the target:

Step Action

1 Configure the communication with the Device Link Manager Config, accessible in:
• On-line > Set up communication… menu of Configuration tab or

Programming tab.
• Or Target > Communication settings menu of Commissioning tab.

The properties are visible and can be edited by clicking Properties. The protocol must
be activated beforehand.

For more information, refer to Setting Up the Communication, page 176

2 Connect the target physically to the computer.

For more information on the hardware connection, refer to the related hardware guides.

3
Connect the target using On-line > Connect menu of Configuration tab or
Programming tab.

For more information, refer to Connect to a Device, page 181 and On-Line Status, page
182

4 Download the project from Configuration tab or Programming tab:
• Select On-line > Download code
• Or press F5

It is also possible to use the Download all button in the project toolbar.

5 Follow the dialog boxes instructions.

If you remove power to the device, or there is a power outage or communication
interruption during the transfer of the application, your device may become
inoperative. If a communication interruption or a power outage occurs, reattempt
the transfer. If there is a power outage or communication interruption during a
firmware update, or if an invalid firmware is used, your device will become
inoperative. In this case, use a valid firmware and reattempt the firmware update.

WARNING
AUTOMATIC RESTART OF CONTROLLER
• Do not download your application without first accessing the state of your

machine or process.
• Do not download your application without first ascertaining that there is no

risk of injury to anyone in or around your machine or process.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NOTICE
INOPERABLE EQUIPMENT
• Do not interrupt the transfer of the application program or a firmware change

once the transfer has begun.
• Re-initiate the transfer if the transfer is interrupted for any reason.
• Do not attempt to place the device into service until the file transfer has

completed successfully.
Failure to follow these instructions can result in equipment damage.

9MA10256.04 49

Managing Projects

Installer Software

Description
A stand-alone software, Installer software, is delivered in addition with FREE
Studio Plus.

You can run it via the Windows start menu or the icon on the desktop after
installing FREE Studio Plus.

The Installer software allows you to:
• Manage the maintenance of systems by downloading projects.
• Manage the configuration of bound controllers.
• Configure the devices.
• Modify the BIOS parameters.
• Detect on which port the target device is connected (via the Network scan

area).
• Manage parameters files of the project (import and export throughout

controllers).
• Create a programming USB key to upload projects in various controllers.
• Generate and preview an HTML page with project parameters.

The Installer software is dedicated for maintenance use. The project code cannot
be modified.

Close FREE Studio Plus

Overview
To exit FREE Studio Plus, click the Close button in the top right-hand corner of the
FREE Studio Plus window.

You can also click the Exit button on the Welcome page window.

Ready DISCONNECTED

Tree

File View Parameters Recipes HelpOptionsTarget Service

Untitled

Add new device to project Choose from disk...Open project

Choose from disk...Import FreeStudio project

Network scan

Protocol: Advanced >>

0 devices found Stop ScanScan

Can

FreeAdvanceSmall 668

Device name Description

Connection Status

Catalog

Device name

FreeAdvance Small

FreeAdvance

AVP Portrait

AVP Landscape

FreeSmart Modbus M...

FreeAdvance Small

FreeAdvance with dis

AVP Portrait

AVP Landscape

FreeSmart Modbus M

668

596

659

659

542

DescriptionVersion

Device Um DescriptionSubldxValueName

Watch Output

Track Um Max value Cur value ValMin value

Oscilloscope

Free Studio Plus

50 9MA10256.04

Managing Projects

Configuration
What’s in This Part

The Configuration Tab ..52
Managing Resources Elements...54
Technical Reference...89

9MA10256.04 51

The Configuration Tab
What’s in This Chapter

Overview of the Configuration Window..52
Menu Bar..53
Toolbar ...53

Overview of the Configuration Window

General Description
Configuration is the entry point for starting to develop projects.

The following illustration presents the default Configuration window:

Item Description

1 Toolbar This toolbar shows the tools in form of icons.

For more information, refer to Toolbars, page 53.

2 Resources
window

This window shows the configurable parameters of the device.

For more information, refer to Content of the Resources Window, page 54.

3 Editor window This window allows you to edit the content of the current selection in Resources window.

4 Catalog window This window shows the devices available from the catalog.
NOTE: Dynamic visibility of devices based on selections (for example communication modules).

5 Output window This window shows the messages relating to the development of the project (file opening, reading/
writing errors, status of connection to device, and so on).

NOTE: The connection to the device is also visible in the status bar, page 35.

For more information, refer to Download and Upload Applications, page 48.

Free Studio Plus
Configuration Programming Display Commissioning

Preprocessing display completed.
Preprocessing Pumping completed.
Preprocessing Communication completed.
Preprocessing Application completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

Ready EDIT MODE NOT CONNECTED....

Catalog

Device name Version

Resources

FREEADVANCE CONFIGURATION

45

File View Project On-line HelpDeveloper

Resources

Configuration
FreeAdvance

Modbus objects

I/O Mapping
Menus

Web Site
BACnet Objects

LON Profile

Plugins
Ethernet
RS485-2
RS485-1
CAN Exp bus

Alarms

EEPROM Parameters

BIOS Parameters
Enums

Field

Device
Analog Value Objects
Binary Value Objects
Calendar Objects
Multi State Value Objects

Notification Class Objects
Schedule Objects

Local

Status variables

1 2 3
C:\My Project\My Project.plcprj

ExportData export

52 9MA10256.04

The Configuration Tab

Menu Bar

Overview
The menu bar of Configuration tab is composed of these menus:

• File, page 28
• View, page 33
• Project, page 30
• On-line, page 29
• Developer, page 27
• Help, page 28

Toolbar

Introduction
The toolbar appears at the top of the FREE Studio Plus window to provide access
to frequently used functions.

For generalities of toolbars, refer to Toolbars description, page 34.

Configuration Toolbar
The Configuration toolbar has the following buttons:

Icon Description

Compile

Launches the compiler.

Connects to the target

Starts the communication with the device.

Code download

Download the configuration and PLC application of the project to the device.

9MA10256.04 53

The Configuration Tab

Managing Resources Elements
What’s in This Chapter

Overview ..54
Target Device..57
Modbus Objects ..58
Target Menus..62
I/O Mapping ..64
Alarms..65
Web Site...66
CAN Expansion Bus ..68
RS-485...78
Ethernet ...85
Plugins ...87

Overview

Resources Window

Overview
The Resources window allows you to configure the device:

• Define parameters and variables.
• Create and configure the embedded website (for FREE Evolution and FREE

Advance only).
• Configure the hardware structure of the project.
• Configure communication protocols.

Content of the Resources Window
The Resources window consists of the following items:

Item Icon Description

Target device, page 57 Shows the picture of the target device and allows you to configure some settings.

Modbus objects, page 58 Define the EEPROM parameters (non-volatile memory parameters) and Status variables
which may then be used in the application code.

Defines EEPROM parameters (non-volatile memory parameters) and Status variables
which can be displayed on the target device and read using the Modbus protocol (RTU or
TCP) or the CAN protocol.

Menus, page 62 Manages menus where you can group the Modbus objects that are shown in
Commissioning.

I/O Mapping, page 64 Defines the links between variables and physical I/O of the target device.

Alarms, page 65 Defines alarm variables which status must be managed by the developer.

Web Site, page 66 Defines website pages to monitor the device from a web browser.

BACnet Objects Configures the BACnet objects.

LON Profile Configures the LonWorks protocol.

54 9MA10256.04

Managing Resources Elements

Item Icon Description

CAN Exp bus, page 68 Configures the CAN Expansion bus.

RS-485-1, page 78 Configures the first RS-485 port.

RS-485-2, page 78 Configures the second RS-485 port.

Master Modbus RTU, page 78 Configure the RS-485 port.

It only applies to FREE Smart Modbus master/slave.

Ethernet, page 85 Configures the Ethernet port.

Plugins, page 87 Configures protocols using communication modules.

Help Shows LED reference for the developer. For FREE Smart only.

NOTE: The Resources window content depends on the selected device.

Match Software and Hardware Configuration
The I/O that may be embedded in your controller is independent of the I/O that you
may have added in the form of I/O expansion. It is important that the logical I/O
configuration within your program matches the physical I/O configuration of your
installation. If you add or remove any physical I/O to or from the I/O expansion
bus, then you must update your application configuration. This is also true for any
field bus devices you may have in your installation. Otherwise, there is the
potential that the expansion bus or field bus no longer function while the
embedded I/O that may be present in your controller continues to operate.

WARNING
UNINTENDED EQUIPMENT OPERATION

Update the configuration of your program each time you add or delete any type
of I/O expansions on your I/O bus, or you add or delete any devices on your
field bus.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Expansion Bus
You must monitor within your application the state of the bus and the error state of
the module(s) on the bus, and to take the appropriate action necessary given your
particular application.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Include in your risk assessment the possibility of unsuccessful

communication between the logic controller and any I/O expansion modules.
• Monitor the state of the I/O expansion bus using the dedicated %SW system

words and take appropriate actions as determined by your risk assessment.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

9MA10256.04 55

Managing Resources Elements

Supported Protocols

Overview
Each device has the following resources, which are shown as nodes of the target.
Select the Mode and add the device from the catalog:

Target Communication
Bus

Description

FREE
Evolution

CAN expansion
bus

On-board

For I/O expansion and remote display

RS-485 On-board

Modbus RTU (master/slave)

Ethernet Optional with communication module:

Modbus TCP (Server), BACnet IP (Server), HTTP

Plugins Optional modules available separately

FREE Panel
EVP

CAN expansion
bus

On-board

For I/O expansion

RS-485 On-board

Modbus RTU (master/slave) or BACnet MS/TP (Server)

Ethernet On-board

Modbus TCP (client/server), BACnet IP (Server), FTP,
HTTP

AV••••••50500 CAN expansion
bus

On-board

For I/O expansion and remote display

RS-485-1 On-board

Modbus RTU (Slave only) or BACnet MS/TP (Server)

RS-485-2 On-board

Modbus RTU (master/slave) or BACnet MS/TP (Server)

Ethernet Optional with communication module:

Modbus TCP (client/server), BACnet IP (Server), FTP,
HTTP

Plugins Optional modules available separately

AV•••••••6•500 CAN expansion
bus

On-board

For I/O expansion and remote display

RS-485-1 On-board

Modbus RTU (Slave only) or BACnet MS/TP (Server)

RS-485-2 On-board

Modbus RTU (master/slave) or BACnet MS/TP (Server)

Ethernet On-board

Modbus TCP (client/server), BACnet IP (Server), FTP,
HTTP

Plugins Optional modules available separately

EWCM 9000
PRO (HF)

CAN expansion
bus

On-board

For I/O expansion and remote display

RS-485-1 On-board

Modbus RTU (Slave only) or BACnet MS/TP (Server)

RS-485-2 On-board

56 9MA10256.04

Managing Resources Elements

Target Communication
Bus

Description

Modbus RTU (master/slave) or BACnet MS/TP (Server)

Ethernet On-board

Modbus TCP (client/server), BACnet IP (Server), FTP,
HTTP

Plugins Optional modules available separately

FREE Optima CAN expansion
bus

On-board

For I/O expansion and remote display

RS-485-1 On-board

Modbus RTU (Slave only) or BACnet MS/TP (Server)

RS-485-2 On-board

Modbus RTU (master/slave) or BACnet MS/TP (Server)

NOTE: The Catalog window shows the devices that can be added (by
dragging them) to the corresponding protocol.
NOTE: On the RS-485 protocol, you can also connect generic Modbus
devices.

Providing HMI Pages
AV•••••••6•500 supports HMI Remote so its pages can be downloaded and
displayed in Display tab for FREE Evolution displays.

This feature is not supported by FREE Panel EVP. No linked device can upload
HMI pages from FREE Panel EVP device.

Target Device

Overview
In the Resources window, double-click the title of the project to display the editor
window.

The editor window presents the graphic of the target device and lets you access
some settings.

FREE Smart/FREE Evolution Configuration
In the editor window, you have the possibility to:

• Define the parameter value shown on the main display on idle state by
selecting a value in the Fundamental state display box.

NOTE: Only available for FREE Smart.
• Set the execution time of the project in milliseconds (ms).

The default setting is 100 ms. The available range is 20...100 ms.
NOTE: Only available for FREE Smart.

• Export parameters and variables defined in .csv format.
For more information, refer to Export CSV Files, page 46.

• Consult the hardware guide of the device by clicking the icon.

9MA10256.04 57

Managing Resources Elements

FREE Advance Configuration
In the editor window, you have the possibility to:

• Export parameters and variables defined in .csv format.
For more information, refer to Export CSV Files, page 46.

• Consult the hardware guide of the device by clicking the icon.

FREE Optima Configuration
In the editor window, you have the possibility to:

• Export parameters and variables defined in .csv format.
For more information, refer to Export CSV Files, page 46.

• Consult the hardware guide of the device by clicking the icon.

Modbus Objects

Overview
Modbus objects allow you to define EEPROM parameters (non-volatile memory
parameters) and Status variables, which can be displayed on the target device
and read using the Modbus protocol, page 89.

EEPROM parameters (non-volatile memory parameters) and Status variables
can be used in the application code. They appear in the Project window: Project
> Aux Variables > Global Shared.

It is possible to add or remove parameters and variables (with Add and Remove
buttons) in the same way as for variables in the Project window.

The Recalc button allows you to recalculate the addresses of the selected rows.

Address Range
In the targets prior to FREE Optima there is a Modbus address defined for the
Status Variables and the Parameters, for FREE Optima however the range of
Modbus addresses is extended:

• 1-8191
• 8960-15523
• 16384 - 64999
• Up to 65000 are reserved for the PLC Runtime

When invalid Modbus addresses are set, the warning message appears:

58 9MA10256.04

Managing Resources Elements

Application

OK

Invalid address value! Must be in
8960..15523, 1..8191, 16384..24322, 24338..64999 range

EEPROM Parameters

EEPROM Parameters allows you to create the variables which the
developer intends to save in non-volatile memory even if the device is powered
off.

Refer to Status Variables, page 60 for details about the columns of the editor
window.

This table presents the columns of the editor window:

Column Description

Address Resource Modbus address

Name Resource name which may be used by the developer in the controller
application.

Display label Name displayed in the application menu of the FREE Smart target (4-digit 7
segments).

Installer type Type of data displayed on target and Installer.

IEC type Type of data used in controller application.

Size Significant only in the case of STRING type. Dimension (Length) of the string.
Default and max= 31 characters.

Read only Enables/disables editing of Status variables.

Default value Default value of the object.

Min Minimum value of the object.

Max Maximum value of the object.

Scale Conversion coefficients between Installer type and IEC type.

IEC type = scale x Installer type + offset.Offset

Unit Unit of measurement of Installer type displayed on Installer and if available with
icon on target.

Format Display format for Default Value / Min / Max.

For example, XXX.Y display of whole number with decimal point.

Installer Access
Level

Here can be set the level of visibility of a parameter in Installer Software.

There are 4 different level of access:
• Admin
• Supervisor
• Base (no password required)
• Never Visible (never visible only in Installer Software)

Refer to Visibility of Menu Resources, page 63.

Description Free text.

Note

NOTE: Columns can be hidden or shown by right-clicking its name and
selecting Hide column or Show columns command.

9MA10256.04 59

Managing Resources Elements

EEPROM memory is limited, there is a limitation in the amount of read and write
operations on this block set at 100k write cycles.

Using the non-volatile memory for a cyclic write operation may result in quickly
exceeding its life cycle limits resulting in an inoperative memory.

NOTICE
Do not use non-volatile memory registers for cyclic write operations.

Failure to follow these instructions can result in equipment damage.

Status Variables

Status variables allow you to define the status variables which can be
displayed in the menu of the device.

NOTE: For FREE Smart / FREE Optima, each variable has a transcoding on
the controller due to the 4-digit / 7-segment display. In the Display label box,
you can select the transcoding and see a preview on the display by clicking
the ellipsis (…).

Some letters are not displayed (for example x and z) so there is a blank space
on the display. If the display label is SET, SSEEtt appears on the display.

This table presents the columns of the editor window:

Column Description

Address Resource Modbus address
NOTE: For FREE Optima there are two different Address Columns:

• Address (dec)
• Address (hex)

Name Resource name which may be used by the developer in the controller
application.

Display label Name displayed in the application menu of the FREE Smart target (4-digit 7
segments).

Installer type Type of data displayed on target and Installer.

IEC type Type of data used in controller application.

Size Significant only in the case of STRING type. Dimension (Length) of the string.
Default and max= 31 characters.

Read only Enables/disables editing of Status variables.

Default Value Default value of the object.

Min Minimum value of the object.

Max Maximum value of the object.

Scale Conversion coefficients between Installer type and IEC type.

7 Segments Preview

Name Display label
Setting Status variable SET

Close

60 9MA10256.04

Managing Resources Elements

Column Description

IEC type = scale x Installer type + offset.
Offset

Unit Unit of measurement of Installer type displayed on Installer and if available with
icon on target.

Format Display format for Default Value / Min / Max.

For example, XXX.Y display of whole number with decimal point.

Display Access
Level

User access level required to see and modify related parameter via Display.

Refer to Visibility of Menu Resources, page 63.

Installer Access
Level

User access level required to see and modify related parameter via Installer.

Refer to Visibility of Menu Resources, page 63.

Description Free text.

Note

NOTE: Columns can be hidden or shown by right-clicking its name and
selecting Hide column or Show columns command.

Enums

Enums allows you to define enumeration elements which can be used in the
Installer Type column of the editor window.

For more information about Enums, refer to Enumerations, page 131.

Enums, which are generated and managed in Programming window can be
viewed in Web Site pages as all the other parameters.

BIOS Parameters

BIOS Parameters allows you to define variations in the default BIOS
parameters map which is factory-set by Eliwell.

This table presents the columns of the editor window:

Column Description

Name Resource name which may be used by the developer in the controller
application.

New value New value of the object.

New min New minimum value of the object.
NOTE: Only for FREE Optima.

New max New maximum value of the object.
NOTE: Only for FREE Optima.

New um New unit of measurement of the object.
NOTE: Only for FREE Optima.

New level New user access level required to see and modify related parameter.

Refer to Visibility of Menu Resources, page 63.
NOTE: Only for FREE Optima.

Default value Default value of the object.

Min Minimum value of the object.
NOTE: Only for FREE Optima.

Max Maximum value of the object.

9MA10256.04 61

Managing Resources Elements

Column Description

NOTE: Only for FREE Optima.

Um Unit of measurement of the object.
NOTE: Only for FREE Optima.

Level User access level required to see and modify related parameter.

Refer to Visibility of Menu Resources, page 63.
NOTE: Only for FREE Optima.

Description Description of the object.

Target Menus

Target Menu FREE Evolution/FREE Advance

Overview
The target menu can be created by using the Configuration tab. In the
Resources window, right-click Menus and select Add Menu command.

The BIOS menu is factory-set and is visible from Device.

The main functions of the keys/LEDs of the target device can be programmed by
using the Display. LEDs are also programmable from in the Operators and
blocks window from the Programming.

In this section, you can define a menu (not visible on the display) and the folders/
variables of which it is composed.

The menu can consist of one or more folders, defined by the developer, into which
are entered:

• EEPROM parameters (non-volatile memory parameters).
• Status variables.

Target Menu FREE Smart

Overview
The target menu consists of a BIOS menu and an Application menu.

The BIOS menu is factory-set.

The following table defines the main functions of the keys/LEDs of the target
device.

Key Press Description

F5 Short Switch from BIOS menu to Application menu and conversely.

F1 or F3 Short Navigate folders and edit values.

F2 Short Cancel operation (ESC function).

F4 Short Access to set menu.

F2+F4 Short Access to Prg menu.

F1/F2/F3/F4 Long Managed by developer (by using target variable sysKeyFunctions[]).

The LEDs are managed by the developer by using target variable sysLocalLeds.

62 9MA10256.04

Managing Resources Elements

The elements entered in the table in this section are displayed on Device.

Menu Prg
The Prg menu can consist of one or more folders, defined by the developer, into
which are inserted:

• EEPROM parameters (non-volatile memory parameters).
• Status variables.
• BIOS parameters.
• Inputs and outputs.

Menu Set
The Set menu is created in the same way as the Prg menu.

The Set menu contains the AL folder.

Visibility of Menu Resources
The visibility of the resources created by the developer is indicated in the following
table:

Display Access Level
column

Installer Access Level
column

Visibility on Installer Visibility on target Note

Always visible Always visible Yes Yes Object assigned to a Prg
or Set menu

Level 1 Supervisor Yes Yes

Supervisor

Level 2 Admin Yes Yes

Admin

Never visible Never visible Yes No Object NOT assigned to
any Prg or Set menu

Never visible Never visible Yes

Visible in the folder ALL
PARAMETERS

No

Target Menu FREE Optima

Overview
The target menu consists of a BIOS menu and an Application menu.

The BIOS menu is factory-set.

The following table defines the main functions of the keys/LEDs of the target
device.

Key Press Description

F5 Short Switch from BIOS menu to Application menu and conversely.

F1 or F3 Short Navigate folders and edit values.

F2 Short Cancel operation (ESC function).

F4 Short Access to set menu.

F2+F4 Short Access to Prg menu.

F1/F2/F3/F4 Long Managed by developer (by using target variable sysKeyFunctions[]).

9MA10256.04 63

Managing Resources Elements

The LEDs are managed by the developer by using target variable sysLocalLeds.

The elements entered in the table in this section are displayed on Device.

Menu Prg
The Prg menu can consist of one or more folders, defined by the developer, into
which are inserted:

• EEPROM parameters (non-volatile memory parameters).
• Status variables.
• BIOS parameters.
• Inputs and outputs.

Menu Set
The Set menu is created in the same way as the Prg menu.

The Set menu contains the AL folder.

Visibility of Menu Resources
The visibility of the resources created by the developer is indicated in the following
table:

Display Access Level
column

Installer Access Level
column

Visibility on Installer Visibility on target Note

Always visible Always visible Yes Yes Object assigned to a Prg
or Set menu

Level 1 Supervisor Yes Yes

Supervisor

Level 2 Admin Yes Yes

Admin

Never visible Never visible Yes No Object NOT assigned to
any Prg or Set menu

Never visible Never visible Yes

Visible in the folder ALL
PARAMETERS

No

I/O Mapping

FREE Smart I/O Mapping
You can define the links between variables and physical I/O of FREE Smart:

• Local: local variables of the controller module.
• Extended: variables of the expansion module.
• Remote: variables on the displays.

FREE Evolution/FREE Advance/FREE Optima I/O Mapping
You can define the links between variables and physical I/O of FREE Evolution/
FREE Advance/FREE Optima:

64 9MA10256.04

Managing Resources Elements

• Local: local variables of the FREE Evolution/FREE Advance/FREE Optima
base module.

• Field: variables of I/O expansion.
To map variables with physical I/Os, enter the name of the PLC variable in I/O
Mapping > Local > Variable column.

NOTE: If correctly defined, the variables defined in Resources are located in
Project window: Project > Aux Variables > Global shared automatically.The
project must be saved without errors for the variables.

Alarms

FREE Smart Alarms
It is possible to define alarm variables which status must be managed by the
developer.

Alarm variables can be used in the application code. They appear in the Project
window: Project > Aux Variables > Global shared.

If the variable assumes a value other than zero, the label is displayed in the
Alarms folder (AL) of the set menu in FREE Smart.

In the Resources window, click Alarm to display the Alarm variable list.

This table presents the columns of the editor window:

Column Description

Name Resource name which may be used by the developer in the controller
application.

Short name Name displayed in the application menu of the FREE Smart/FREE Evolution
target (4-digit).

NOTE: If not filled, the text displayed on the controller will be the 4 first
characters of the variable.

Description Description of the variable.

NOTE: Each variable has a transcoding on the controller due to the 4-digit / 7-
segment display. In the Short name label box, you can see a preview on the
display by clicking the ellipsis (…).

Some letters are not displayed (for example x and z) so there is a blank space
on the display. If the text is SET, SSEEtt appears on the display.

FREE Evolution/FREE Advance Alarms
In the FREE Evolution/FREE Advance target, it is only a Global type USINT
declaration.

The alarms for FREE Evolution/FREE Advance are only defined to enable the
portability of an FREE Smart project.

FREE Optima Alarms
It is possible to define alarm variables which status must be managed by the
developer.

Alarm variables can be used in the application code. They appear in the Project
window: Project > Aux Variables > Global shared.

9MA10256.04 65

Managing Resources Elements

If the variable assumes a value other than zero, the label is displayed in the
Alarms folder (AL) of the set menu in FREE Optima.

In the Resources window, click Alarm to display the Alarm variable list.

This table presents the columns of the editor window:

Column Description

Name Resource name which may be used by the developer in the controller
application.

Short name Name displayed in the application menu of the FREE Optima target (4-digit).
NOTE: If not filled, the text displayed on the controller will be the 4 first
characters of the variable.

Description Description of the variable.

NOTE: Each variable has a transcoding on the controller due to the 4-digit / 7-
segment display. In the Short name label box, you can see a preview on the
display by clicking the ellipsis (…).

Some letters are not displayed (for example x and z) so there is a blank space
on the display. If the text is SET, SSEEtt appears on the display.

Web Site

Web Functionalities
The FREE Advance features web functionalities, offering makers of machinery
and systems integrators remote access. Having a web-based connection in
machines reduces support and maintenance by minimizing call-out charges. End
users also benefit, as they can monitor their own systems both locally and from
distance, using the graphics interface of any browser.

Main web functionalities:
• Web-based access.
• Remote reading.
• Local and remote system control, including alarms management.
• Preventive and predictive maintenance.
• Email alarm alerts.

Care must be taken and provisions made for use of this product as a control
device to avoid inadvertent consequences of commanded machine operation,
controller state changes, or alteration of data memory or machine operating
parameters.

Page title:

Refresh (ms):

Choose...

1000

Site template:

(0=disable refresh)

Filename:

Password:

Enable build

‘WEB MENU TITLE’ WEB TABLE PAGE

Add Up DownRemove

Name Control Section Img filenameLabel Img X Img Y Enum values# Text size

66 9MA10256.04

Managing Resources Elements

WARNING
UNINTENDED EQUIPMENT OPERATION
• Configure and install the mechanism that enables the remote HMI local to

the machine so that local control over the machine can be maintained
regardless of the remote commands sent to the application.

• You must have a complete understanding of the application and the machine
before attempting to control the application remotely.

• Take the precautions necessary to assure that you are operating remotely on
the intended machine by having clear, identifying documentation within the
application and its remote connection.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NOTE: Schneider Electric and Eliwell adhere to industry best practices in the
development and implementation of control systems. This includes a
"Defense-in-Depth" approach to secure an Industrial Control System. This
approach places the controllers behind one or more firewalls to restrict access
to authorized personnel and protocols only.

WARNING
UNAUTHENTICATED ACCESS AND SUBSEQUENT UNAUTHORIZED
MACHINE OPERATION
• Evaluate whether your environment or your machines are connected to your

critical infrastructure and, if so, take appropriate steps in terms of prevention,
based on Defense-in-Depth, before connecting the automation system to
any network.

• Limit the number of devices connected to a network to the minimum
necessary.

• Isolate your industrial network from other networks inside your company.
• Protect any network against unintended access by using firewalls, VPN, or

other, proven security measures.
• Monitor activities within your systems.
• Prevent subject devices from direct access or direct link by unauthorized

parties or unauthenticated actions.
• Prepare a recovery plan including backup of your system and process

information.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Define a secure password for the Web Functionalities, and do not allow

unauthorized or otherwise unqualified personnel to use the features therein.
• Ensure that there is a local, competent, and qualified observer present when

operating on the controller from a remote location.
• Configure and install the mechanism that enables the remote HMI local to

the machine so that local control over the machine can be maintained
regardless of the remote commands sent to the application.

• You must have a complete understanding of the application and the machine
before attempting to control the application remotely.

• Take the precautions necessary to assure that you are operating remotely on
the intended machine by having clear, identifying documentation within the
application and its remote connection.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

9MA10256.04 67

Managing Resources Elements

CAN Expansion Bus

CAN Expansion Bus Overview

Description
FREE Evolution/FREE Advance/FREE Optima have one on-board CAN
Expansion bus port, plus another one available as an external plugin. Each port
can be configured as Not used (disabled), or Master (for field).

FREE Panel EVP can be connected using CAN Expansion bus for field mode or
for network mode.

Master (for Field)
When you configure the CAN Expansion bus port as Master (for field), the
controller acts as a CAN Expansion bus master on this port. You can attach CAN
Expansion bus slave devices and exchange data with remote I/O.

For a CAN Expansion bus master port, you have to configure:
• Baud rate used in this CAN Expansion bus network (in kb/s).
• Node ID for the master (1…127), by default is 125.
• Heartbeat time in ms, by default 0 (heartbeat producer disabled).
• The SYNC COBID to use, by default 128.
• The period for the SYNC cycle in ms, by default 0 (sync disabled).
• The parameter which represents the maximum number of expansions used

by PLC application.
After you added and configured the various CAN Expansion bus slaves, you can
link the remote objects of the slave and the internal PLC variables to read or write.

The set of controller objects you can read or write is made of:
• Status variables, created with Configuration.
• Field variables, created with Configuration.

Slave (for Binding)
The binding mode can be configured with the Installer software, page 50.

When you configure the CAN Expansion bus port as Slave, the FREE Evolution/
Advance bus port acts as a CAN Expansion bus slave. You can exchange data by
Binding I/O with other devices on the CAN Expansion bus network.

Configuring the port:

For a CAN Expansion bus slave port, you have to configure:
• Baud rate used in this CAN Expansion bus network (in kb/s).
• Node ID for the slave (1…127), by default is 1.
• The “virtual network” where this FREE Evolution Display is attached; in the

tree appears a small colored circle of same color of the chosen network
(same color means same network).

• The maximum number of devices that can be bound is 10
The Binding object:

Once a CAN Expansion bus port has been configured as Slave, the device is able
to SEND objects on the network. To make the device able to READ objects from
other devices, it is necessary to add a Binding object to the port.

The set of PLC objects you can send or receive is made of:

68 9MA10256.04

Managing Resources Elements

• EEPROM parameters (non-volatile memory parameters), created with
Configuration.

• Status variables, created with Configuration.
Clicking the Binding object displays its configuration page: here is a grid where
you want to insert the remote objects to read, and link them to the local
destinations.

To do this, click the Add button. A window displaying the “public” objects from the
other devices on the network appears. Here you can apply search filters and
choose which objects to read (multi-selection is also supported).

Once you have inserted the remote objects to read, you have to assign the local
destination locations to write, choosing from the list in the Dest parameter column
or manually inserting the Address.

NOTE: It is necessary to rebuild the PLC project to update the list of public
objects.

Example:
• EVD_1_par1 reads from Free Evolution EVD_2 the EVD_2_par1 object and

puts it in its local EVD_1_par1 object.
• EVD_1_par1 reads from Free Evolution EVD_2 the EVD_2_par1 object and

puts it in its local EVD_1_par1 object.
In the Period field, you can configure the period for each parameter; the object is
updated every “period” in ms.

Using an Expansion Module as CAN Expansion Bus Field Slave

CAN Expansion Bus with FREE Advance Expansion Modules and FREE
Advance Controllers

In this configuration example, you want to use FREE Advance Expansion 28 I/Os
as expansion of a AV•••••••6•500 device. The same can be done for other logic
controllers.

Configure AV•••••••6•500 CAN Expansion Bus in Master (for field) mode. From the
Catalog window, select Expansion EVE6000/10200 node and drop it on the CAN
Expansion Bus node.

Expansion EVE6000/10200 configuration is divided into four tabs:
• GENERAL: to configure the network parameters.
• DIGITAL I/O: to configure the digital I/Os.
• ANALOG I/O: to configure the analog I/Os.
• ADVANCED SETTINGS: to add and remove variables.

9MA10256.04 69

Managing Resources Elements

GENERAL tab of Expansion EVE6000/10200:

DIGITAL I/O tab of Expansion EVE6000/10200:

FREE Studio Plus knows the Expansion EVE6000/10200 dictionary. Each object
can be assigned to a PLC variable.

Follow this procedure do assign an object to a PLC variable:

Step Action

1
Click Assign button.

2 Select the PLC variable that you want to assign to the PLC object:

70 9MA10256.04

Managing Resources Elements

Step Action

NOTE: It is possible to apply a filter to the choice list by entering a string of
characters.

3 Click OK button to validate.

4 The PLC Var name is added and its address is displayed in the DataBlock field.

NOTE: Click Unassign button to remove the assignment.
ANALOG I/O tab of Expansion EVE6000/10200:

9MA10256.04 71

Managing Resources Elements

ADVANCED SETTINGS tab of Expansion EVE6000/10200:

CAN Expansion Bus with FREE Evolution Expansion Module and FREE
Evolution

In this configuration example, you want to use EVE7500 as expansion of a FREE
Evolution device. The same can be done for other logic controllers.

Configure FREE Evolution CAN Expansion Bus in Master (for field) mode. From
the Catalog window, it is possible to select EXPANSION EVE 7500 (SIC) node
and drop it on the CAN Expansion Bus node.

EXPANSION EVE 7500 (SIC) configuration is similar to CAN Custom
configuration (Using a CAN Custom Device, page 74) with dynamic PDO mapping
feature disabled. Available Input/Output objects that can be mapped on PLC
variables via PDO are listed in PDO TX - INPUT and PDO RX - OUTPUT.

CAN Expansion Bus for FREE Panel EVP

Description
FREE Panel EVP can be connected using CAN Expansion bus in field mode or in
network mode.

Field Mode
To connect FREE Panel EVP in this mode select FREE Evolution Display or Free
Evolution EVC CAN Expansion bus node and select the option Master (for field)
then take FREE Panel EVP device from Catalog tab and drop it over CAN
Expansion bus node.

Select Free Evolution EVP_1 child node and configure Network settings.

Probes:

Free Evolution EVD_1 can access to Free Evolution EVP_1 on-board probes.
To do so select Probes - Input tab then it is possible to map a Free Evolution
EVD_1 parameter to let it obtain the value of an on-board Free Evolution EVD
probe.

Choose one of the probes and click Assign button. Take one of the Free
Evolution EVD_1 INT parameter and click OK button.

HMI:

It is possible to associate to a FREE Panel EVP (configured as CAN Expansion
bus field slave) an HMI project with local pages. FREE Panel EVP would be able
to show its own target variables and parameters of the CAN Expansion bus
master to which it belongs.

72 9MA10256.04

Managing Resources Elements

Network Mode
The HMI remoting and binding mode can be configured with the Installer
software, page 50.

In this connection mode, FREE Panel EVP can be linked to one of the remote
devices that are available on the network to navigate HMI Remote pages provided
by other devices.

Using the Installer software, it is possible to do so by indicating one of the
available HMI Remote devices of the network.

For example:

You have a CAN Expansion bus network with Free Evolution EVD_1 and Free
Evolution EVC_1 then add as first-level node Free Evolution EVP_1 to the
network taking it from Catalog panel.

Click CAN Exp bus node of Free Evolution EVP_1 and select Master (for HMI
remoting and binding) node, assign unique Node ID and select network CAN Exp
bus1.

Binding of variables between Free Evolution EVP_1 and Free Evolution EVC_1
and Free Evolution EVD_1 is allowed in a network of this type (see chapter CAN
Expansion bus - Binding, page 68 for more details).

HMI Remote pages:

In CAN Expansion bus network mode, it is possible to configure FREE Panel EVP
in order to be linked to 0 to 10 remote devices that can provide HMI Remote pages
to the keyboard.

To add HMI Remote pages select Free Evolution EVP_1 node, then press Add
on the HMI Remote pages box thus all available devices will be displayed and the
user can select the pages to navigate.

CAN Custom Device

Description
CAN custom device can be created and added to the Catalog by importing its
EDS file. Therefore, you can use any third-party CAN Expansion bus device as a
slave, as long as it provides a standard, compliant EDS file (Electronic Data
Sheet) that follows the DS402 CiA specification.

Importing a New CAN Custom Device
To import a new CAN custom device, choose Developer > Import EDS
command.

9MA10256.04 73

Managing Resources Elements

The Import EDS window appears:

Here you have to configure:
• The source EDS file to import, using the Choose... button.
• The full name of the device (by default is Product name + Revision).
• The short name must not include any special characters or spaces.
• Dynamic PDO mapping: if you activate this option, you are able to configure

manually and modify the default PDO mapping read from the EDS to match
the actual mapping of the slave, otherwise the PDO mapping is read-only and
determined only by the EDS default values.

After you have chosen the EDS file, the window will show a resume of the device
characteristic and number of objects (detailed in mandatory, optional,
manufacturer).

Deleting a CAN Custom Device
When the device you want to delete is visible in the Catalog window (for example
when a CAN Expansion bus port is selected and is in Master mode), you can
right-click on it and choose the Delete from catalog command.

Using a CAN Custom Device

Description
When you insert a CAN custom device as a CAN Expansion bus slave (for
example under a CAN Expansion bus slave port) and click it on the Resources
window, the editor window displays four tabs.

Import EDS

C:\ATV600_CANopen_EDS_V2.1\SEATV6x0_0102Source EDS:

OK Cancel

Comments:

Choose...

Has dynamic PDO mapping:

Short Name:

New Name:

Schneider ElectricVendor Name:

ATV6x0_V2.1Product Name:

EDS for ATV6x0Description:

1.513Revision:

Number of Objects

Manufacturer: 87Optional: 393Mandatory:

Import EDS

Conforamnce class = S20
Product function = Frequency Converter
Supported profiles = 402 V3
Boot-up time = 100ms

ATV6x0_V2.1 1.513

ATV6x0_V2p1_1p513

74 9MA10256.04

Managing Resources Elements

General Tab

In the General tab, you can configure:
• Node number (1…122).
• Node guard period in ms (default 200 ms). Value 0 disables node guard for

this slave. If not zero, it is the interval of node guarding packets sent by the
master to the slave.

• Life time factor (default 3x). Value 0 disables node guard for this slave. If not
zero, multiplied by the Node guarding period, it is the maximum amount of
time the master waits for the slave answer for the node guard.

• Boot time elapsed: this is the maximum amount of time in ms that the master
waits for the slave to become pre-operational at boot (default 10 s) before
signaling an error.

• Node heartbeat producer time in ms, default is value 0 (heartbeat disabled).
If not zero, the master enables the heartbeat error handling for this node.

• Node heartbeat consumer time in ms, default is value 0 (heartbeat
disabled). If not zero, it is the maximum amount of time the slave waits for the
heartbeat produced by the master before timing out. This should be greater
than the Heartbeat time of the master.

• Master heartbeat consumer time in ms, default is value 0 (heartbeat
disabled); it is the maximum amount of time the master waits for the heartbeat
sent by the slave before timing out. This should be greater than the Node
heartbeat producer time.

• Identity object check: when this option is enabled (the default) the master at
boot verifies the slave for its identity, verifying that the Identity object fields
(object 1018 hex) match with EDS default values (Vendor ID, Product code,
Revision, Serial). If the option is not enabled, no verification is done.

• PDO Tx comm settings: configure here the transmission mode for PDO Tx;
depending on the device features (determined from EDS values), not all
options may be available.

• PDO Rx comm settings: configure here the transmission mode for PDO Rx;
depending on the device features (determined from EDS values), not all
options may be available.

ATV6X0_V2.1 1.513 CONFIGURATION
GENERAL SDO SET PDO TX - INPUT PDO RX - OUTPUT

Network Settings PDO Tx communication
settings

PDO Rx communication
settings

USER DEFINED Mode

SYNC Mode

EVENT Mode

CYCLIC Mode 1000 ms

USER DEFINED Mode

SYNC Mode

EVENT Mode

Node Guard Period (ms)

Node number (1...122)

Life time Factor

Boot time elapsed (ms)

Node heartbeat producer
time (ms)

Identity object check

Node heartbeat consumer
time (ms)

Master heartbeat
consumer time (ms)

3

200

3

10000

0

0

0

9MA10256.04 75

Managing Resources Elements

SDO Set Tab

In this page, you can insert a list of objects and values to send to the slave at boot
for configuration purposes, using SDO packets.

Press the Add button, choose the objects to send, and then insert their Value in
the grid.

Some objects are handled automatically, for example the Transmission type and
Event timer are configured automatically depending on the PDO Tx comm
settings and PDO Rx comm settings in the General tab.

PDO Tx - Input and PDO Rx - Input Tabs
In the PDO Tx - Input tab, you configure the PDOs (Process Data Object) that the
slave transmits, and so the master receives in input. In the PDO Rx - Output tab,
you configure the PDOs that the slave receives, and so the master sends the
output.

If the CAN custom device was imported with the Dynamic PDO mapping
enabled, you are able to edit the PDO mapping by adding and removing objects
and manually edit the PDO and Bit columns. Otherwise, the Add and Remove
buttons are not available and you have to use the PDO configuration as-is.

If you check the Split single bits option, the object you choose is inserted as
single bits to be linked to BOOL variables (that is the default for digital I/O objects
in the DS401 standard).

NOTE: This PDO mapping configuration is not sent to the device, its only
purpose is to match a configured PDO mapping on the device.

Then with the Assign button you can link each CAN object with the PLC variable
to read (PDO Tx) or write (PDO Rx).

NOTE: It is necessary to rebuild the PLC project with Programming to update
the list of PLC variables.

PDO TX - INPUT tab of ATV6X0_V2.1.1.513 CONFIGURATION:

ATV6X0_V2.1 1.513 CONFIGURATION
GENERAL SDO SET PDO TX - INPUT PDO RX - OUTPUT

Add Remove

#

1

2

3

4

5

6

Label Index SubIndex Type Value Timeout

Transmission Type

Event Timer

Transmission Type
Event Timer

Transmission Type

Transmission Type

1800

1800

1802
1802

1400

1402

2

5

2
5

2

2

USINT

UINT

USINT
UINT

USINT

USINT

255

1000

255
1000
255

255

100

100

100
100
100

100

Transmission Type

Add Remove Assign UnAssign

Idx Sub PDO Bit COBID Object Name Type Size Label DataBlock
1
2
3
4
5
6

#
6041
6044
2061
2061
2061
2061

ATV6X0_V2.1 1.513 CONFIGURATION
GENERAL SDO SET PDO TX - INPUT PDO RX - OUTPUT

0
0
2a
2b
2c
2d

1
1
3
3

3
3

16
0

32
48

16

0 0
0
0
0
0
0

Statusword
Control Effort
NM1 (12741)
NM2 (12742)
NM3 (12743)
NM4 (12744)

UINT
INT
UINT
UINT
UINT
UINT

16
16
16
16
16
16

76 9MA10256.04

Managing Resources Elements

PDO RX - OUTPUT tab of ATV6X0_V2.1.1.513 CONFIGURATION:

CAN Expansion Bus Field - Virtual Master Channels

Overview
This paragraph describes the criteria used by Configuration to assign virtual
node IDs due to the network configuration.

Description
When CAN Expansion bus is in use on a FREE Evolution device in Master mode
(field), three master channels are opened.

First master channel is used to process requests that arrive to its physical node ID
(the ID assigned by you in the configuration box). Supervisor PC should be
connected using this node ID. CAN Expansion bus physical node ID addrmust be
chosen in a range between 1 to 122 or 125.

Two other virtual master channels are opened on this device and are dedicated to
the communication with keyboards (max 2 for each CAN Expansion bus network).

Virtual master node IDs have fixed values:
ch_1 = 123
ch_2 = 124

Example: FREE Evolution + 2 x EVK1000 Display Graphic
The two FREE Smart/FREE Evolution Graphic displays are both connected to the
CAN expansion bus.

The CAN expansion bus has two default virtual channels that can be connected to
a maximum of 2 x EVK1000 Display Graphic.

The default virtual channels are 124 for the first display and 123 for the second
EVK1000 Display Graphic.

Click ? button from the CAN expansion bus to view the values.

The default address of the Display for EVE_2 display is 127, the default virtual
channel 124 and the default CAN baudrate 500 kb/s.

Thus, when physically connecting an EVK1000 Display Graphic to an FREE
Evolution with the default settings, upload HMI from the EVK1000 Display Graphic
BIOS menu.

In other cases, such as for Display for EVE_2 (which has the address 126), set the
address 126 and the virtual canal 123 from the EVK1000 Display Graphic BIOS
menu.

Add Remove Assign UnAssign

Idx Sub PDO Bit COBID Object Name Type Size Label Data Block
1
2
3
4
5
6

#
6040
6042
2061
2061
2061
2061

ATV6X0_V2.1 1.513 CONFIGURATION
GENERAL SDO SET PDO RX - OUTPUTPDO TX - INPUT

0
0
3e
3f
40
41

1
1
3
3

3
3

16
0

32
48

16

0 0
0
0
0
0
0

Controlword
Target Velocity
NC1 (12761)
NC2 (12762)
NC3 (12763)
NC4 (12764)

UINT
INT
UINT
UINT
UINT
UINT

16
16
16
16
16
16

9MA10256.04 77

Managing Resources Elements

RS-485

Overview

Description
FREE Evolution Display / FREE Panel EVP has one on-board RS-485 port, plus
another one available as an external plugin. Each port can be configured as Not
used (disabled) or Modbus Master (field).

FREE Optima / FREE Advance has two on-board RS-485 ports.

The first port (RS-485-1) is used for Modbus Slave - BACnet MS/TP. The RS-485-
2 port can be configured as Modbus Slave - BACnet MS/TP or Modbus Master
(for field).

Field
When you configure the RS-485 port as Master the target acts as a Modbus RTU
master on this port. So you can connect Modbus slave devices.

For a Modbus master port, you must configure:
• Baud rate used in this Modbus network (in b/s).
• Serial mode (parity, data bits, stop bits).

To add a Modbus slaves, right-click RS-485 and select Add command. You can
also drag a Modbus slave from the Catalog window to the RS-485 item in the
Resources window.

After you added and configured the Modbus slaves, page 79, you can link the
remote objects of the slave and the internal PLC variables to read or write.

The set of PLC objects you can read or write is made of:
• Status variables.
• Field variables declared in I/O Mapping > Field.

RS485 CONFIGURATION

Baud rate 9600 b/s

19200 b/s

38400 b/s

57600 b/s

115200 b/s

Modbus Master (for field)

Mode

Serial Mode E,8,1 (Even parity, 8 data bits, 1 stop bit)

Modbus Slave – BACnet MS/TP

78 9MA10256.04

Managing Resources Elements

Using a EVE7500 27 I/O as RS-485 Slave

Description
In this configuration example, you want to use EVE7500 Expansion as expansion
of a FREE Evolution Display device. The same can be done for other logic
controllers.

Configure FREE Evolution Display RS-485 in Modbus Master (for field) mode.
From the Catalog window, it is possible to select Expansion EVE node and drop
it on the RS-485 node.

Expansion EVE configuration is similar to a (Modbus Custom device
configuration, page 84). It is possible to assign available Expansion EVE
dictionary I/O objects to FREE Evolution EVD PLC variables.

Configuration knows the Expansion EVE dictionary. Input and Output objects
can be added, removed, assigned, unassigned, or changed in position. Only
assigned objects are requested by FREE Evolution EVD device.

GENERAL tab of EXPANSION EVE 7500 (SIC) CONFIGURATION:

INPUT tab of EXPANSION EVE 7500 (SIC) CONFIGURATION:

OUTPUT tab of EXPANSION EVE 7500 (SIC) CONFIGURATION:

9MA10256.04 79

Managing Resources Elements

Generic Modbus Object Overview

Description
The Generic Modbus object is a generic Modbus slave that can be inserted
under the RS-485 port of the logic controller, when configured as Modbus
master.

To add a Generic Modbus object:

Step Action

1 In the Resources window, click RS-485.

2 • Drag Generic Modbus from the Catalog window to RS-485 item in the
Resources window.

• Or you can right-click RS-485 and select Add command.
Generic Modbus appears under RS-485 item.

You can use the Generic Modbus when you want to configure manually and have
full control over the single Modbus messages to send to the slave.

Another typical usage is for third-party devices that you plan to use once in your
project, and you do not want to put in the catalog for future reuse.

In the main page of the Generic Modbus you can configure:
• A name for the object in the project.
• Its Modbus address (in the range 1…247).
• Its Node number (node ID)(in the range 0…127): this value is incremented

automatically, and can be used in the PLC program to index the
SysMbMRtuNodeStatus[] array that contains diagnostic information about
each slave node.

Generic Modbus Object Messages

Description
The Generic Modbus object alone does nothing; you have to add under it one or
more Modbus messages that are specific Modbus function requests that are sent
on the bus.

GENERIC MODBUS NODE
GENERAL

Settings Name: Generic Modbus_1

Modbus address: 1 (0 … 247, 0=broadcast)

Node number: 1 (0 … 127)

80 9MA10256.04

Managing Resources Elements

To add a function to a Generic Modbus object, drag a Modbus function from the
Catalog window to Generic Modbus item in the Resources window. You can
also right-click Generic Modbus and select Add command.

Function Description Details Objects
length

1 0x01 Read Coils Reads one or more read-only discrete output
coils

1-bit

2 0x02 Read Discrete Inputs Reads one or more read-only digital inputs 1-bit

3 0x03 Read Holding
Registers

Reads one or more read/write registers 16-bit

4 0x04 Read Input Registers Reads one or more read-only registers 16-bit

5 0x05 Write Single Coil Writes one discrete output coil 1-bit

6 0x06 Write Single Register Writes single analog output holding register 16-bit

15 0x0F Write Multiple Coils Writes one or more digital outputs 1-bit

16 0x10 Write Multiple registers Writes one or more registers 16-bit

The messages are processed in the order they are inserted in the tree.

General Tab
Select the Modbus function added to the tree to display its configuration window:

For each message, in its General tab you can configure:
• Start address: address of the first Modbus object to read or write (1…65536).
• Polling time: the message is processed with this period (ms):
◦ For writing operations: value 0 means to write it only on variation of the

value.
◦ For reading operations: value 0 means maximum speed.

• Time out: the operation is unsuccessful when this time-out expires (ms).

Device name Version Description

Modbus FC-01

Modbus FC-02

Modbus FC-03

Modbus FC-04

Modbus FC-05

Modbus FC-15

Modbus FC-16

Modbus FC-06

1

1

1

1

1

1

1

1

Read Coils - Function 01 (0x01)

Read Discrete Inputs - Function 02 (0x02)

Read Holding Register - Function 03 (0x03)

Read Input Registers - Function 04 (0x04)

Write Single Coil - Function 05 (0x05)

Write Multiple Coils - Function 15 (0x0F)

Write Multiple Register - Function 16 (0x10)

Write Single Register - Function 06 (0x06)

Catalog

MODBUS FC
GENERAL

Settings Start address: 0 (1 … 65536)

Polling time: 0 ms (0 = Continuous Read)

Time out: 1000 ms

Wait before send: 10 ms

9MA10256.04 81

Managing Resources Elements

• Wait before send: this is the wait time before sending another request to the
salve device.

Coils Tab
Beside the General tab, each different message has a second tab where you can
configure the list of objects to read or write.

Using the Add button, insert one row for each Modbus object to read or write, up
to 16 elements. The first row has the address configured in the Address box in
the General tab, and the other rows increment and follow.

For each row, press the Assign button to choose the PLC object to link and to be
read or written with this Modbus message; you cannot leave unassigned rows in
the message.

NOTE: Remember to rebuild the PLC project to see an updated list of PLC
variables here.

Modbus Custom Devices

Description
You can create and edit Modbus custom devices directly.

Therefore, you can use in your project and add in the catalog for future reuse any
third-party Modbus slave, characterizing its Modbus map only the first time and
simplifying its further use, because you do not have to care about Modbus
messages and functions anymore.

Creating a New Modbus Custom Device
To create a new Modbus custom device, choose Developer > Run Modbus
custom Editor; the external ModbusCustomEditor tool is launched, with a new
empty document.

Add Remove Assign UnAssign

MODBUS FC 01(0X01) – READ COILS
GENERAL COILS

Name
1
ObjType Label Address DataBlock Description

Coil Bool 0

82 9MA10256.04

Managing Resources Elements

Here you can configure:
• Name of the device.
• Long description for the device.
• A version number.
• Overlapping of bit and register maps: check this if the device has both a 0

register and a 0 bit (in other words it has different addressing of 16-bit and 1-
bit objects). Uncheck this if the address is unique and so duplicated are not
allowed, even if the type is different.

• Max message size: insert here the maximum number of registers per
message supported by the device.

Then, using the Add button, add one row for each Modbus object of the device.
You have to insert its address, name, type (note that Type and Read only
columns are linked with the Modbus type column) and optionally a long
description.

When you finish, save the current device definition; you are prompted for a file
name with .PCT extension, by default it is proposed the current name+version.

The file is saved in the special ModbusCustom folder in the catalog; now you can
close the ModbusCustomEditor and go back in Configuration to use the new
device.

Editing an Existing Modbus Custom Device
To edit an existing Modbus custom device, you can:

• Run the ModbusCustomEditor with the Developer > Run Modbus custom
Editor command, and then manually open the PCT file with the standard File
> Open command.

• When the device you want to edit is visible in the Catalog window (for
example when an RS-485 node is selected and is in Master mode), you can
right-click on it and choose the Edit device command; the
ModbusCustomEditor is launched and the selected device opened.

MODBUS CUSTOM EDITOR

Device Version

ModbusCustomEditor

Version: 1.0

Description: Modbus custom device description

Modbus RTU

Device Info

Name: ModbusCustomDeviceName

Max message size (bit): 2000

Max message size (reg.): 120

Modbus TCP

Enable overlap of Bit and Reg maps

1
Address Label Type Read only Modbus type Description
1 Label1 INT False Holding Register (16 bit)

Add Remove Up Down

SaveOpenNew

9MA10256.04 83

Managing Resources Elements

Deleting a Modbus Custom Device
To delete an existing Modbus custom device when the device is visible in the
Catalog window, do a right-click on it and choose Delete from catalog.

Using a Modbus Custom Device

Description
When you insert the Modbus custom device as a Modbus slave (for example
under an RS-485 port) and click it on the Resources window, the Editor window
displays three tabs.

General Tab
In the General tab you can configure:

• Its Modbus address (in the range 1…247).
• Its Node number (in the range 0…127); this value is incremented

automatically, and can be used in the PLC program to index the
SysMbMRtuNodeStatus[] array that contains diagnostic information about
each slave node.

• Polling time: the Modbus messages are processed with this period (ms); for
writing operations, value 0 means to write it only on variation of the value, for
reading operations value 0 means maximum speed.

• Timeout: the operation is unsuccessful when this time-out expires (ms).
• Wait before send: this is an additional timeout (to be used with slow slaves

that do not answer if the messages are sent too fast).
GENERAL tab of MODBUS CUSTOM CONFIGURATION:

Here you can note that for Modbus custom the Polling time, Timeout, and Wait
before send are generic for the whole device while for the Generic Modbus you
can put specific different values for each single message. This is because with the
Modbus custom the low-level Modbus messages are automatically calculated.
However, you cannot “fine-tune” them because these settings are global.

Input and Output Tabs
In the Input and Output tabs, you can insert one row for each Modbus object to
read or write. Press the Add button and choose the parameters to exchange
(multi-selection is supported). Use the Assign button to link them to the PLC
object to be read or written to.

MODBUS CUSTOM CONFIGURATION
INPUT OUTPUTGENERAL

Settings Modbus address: 1 (1 … 247)

Node number: (0 … 127)

Polling time: 0 Ms (0 = continuous read/write on variation)

TimeOut: 1000 ms

Wait before send: 10 ms

2

84 9MA10256.04

Managing Resources Elements

INPUT tab of MODBUS CUSTOM CONFIGURATION:

OUTPUT tab of MODBUS CUSTOM CONFIGURATION:

Insert in the Input tab the Modbus objects to READ from the Modbus slave (and to
put into PLC variables). Insert in the Output tab the Modbus objects toWRITE to
the Modbus slave (and to get from the PLC variables).

NOTE: Remember to rebuild the PLC project with Application to see an
updated list of PLC variables here.

Configuration creates the correct Modbus messages analyzing the sequence of
addresses and types. If the addresses are consecutive and the types are
homogeneous, different objects are grouped in single messages to optimize the
communication.

The maximum number of registers configured with the ModbusCustomEditor is
also considered, along with the maximum number of registers per message of the
master (16 for the FREE Evolution/FREE Advance).

The grouping and generation of the Modbus messages is automatic and
recalculated at each compilation.

Ethernet

Description
FREE Panel EVP / AV•••••••6•500 are provided with an integrated Ethernet port.

FREE Evolution/AV••••••50500 can have one Ethernet port, available as an
external communication module.

The Ethernet port can be configured as a Modbus TCP in two ways:
• Server only: the controller supports communication from other controller

requests.
• Client/Server: the controller supports Modbus TCP communication from

other controller requests as well as making requests to other controllers.
NOTE: Schneider Electric and Eliwell adhere to industry best practices in the
development and implementation of control systems. This includes a
"Defense-in-Depth" approach to secure an Industrial Control System. This
approach places the controllers behind one or more firewalls to restrict access
to authorized personnel and protocols only.

Remove Assign UnAssign

MODBUS CUSTOM CONFIGURATION
GENERAL OUTPUTINPUT

Up Down

Parameter Address Type Variable Type DataBlock
Label1 1 INT

Add

Remove Assign UnAssign

MODBUS CUSTOM CONFIGURATION
GENERAL INPUT OUTPUT

Up Down

Parameter Address Type Variable Type DataBlock
Label1 1 INT

Add

9MA10256.04 85

Managing Resources Elements

WARNING
UNAUTHENTICATED ACCESS AND SUBSEQUENT UNAUTHORIZED
MACHINE OPERATION
• Evaluate whether your environment or your machines are connected to your

critical infrastructure and, if so, take appropriate steps in terms of prevention,
based on Defense-in-Depth, before connecting the automation system to
any network.

• Limit the number of devices connected to a network to the minimum
necessary.

• Isolate your industrial network from other networks inside your company.
• Protect any network against unintended access by using firewalls, VPN, or

other, proven security measures.
• Monitor activities within your systems.
• Prevent subject devices from direct access or direct link by unauthorized

parties or unauthenticated actions.
• Prepare a recovery plan including backup of your system and process

information.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Configuration
To configure the Ethernet port:

• Select Client/Server or Server only.
• Enter the additional Modbus TCP sockets (0 by default).

The IP address is stored in Modbus objects > BIOS Parameters.

Client/Server
The Client/Server configuration allows the controller to send requests and to read
responses from or to other devices connected on the same Ethernet network.

You can attach Modbus devices and exchange data.

You can add generic Modbus devices, page 80, or custom devices created with
the Modbus custom Editor, page 82 in the same way as for RS-485.

After you added and configured the Modbus nodes, you can add Generic Modbus
Objects Messages, page 80 to define the READ or WRITE functions.

The set of controller objects you can send or receive is made of:
• EEPROM Parameters (non-volatile memory parameters)
• Status variables

The configuration page for the Binding object in Modbus TCP is the same as the
CAN Expansion bus. Refer to chapter CAN Expansion bus - Binding, page 68 for
a description and usage of this page.

86 9MA10256.04

Managing Resources Elements

The only difference from CAN Expansion bus Binding is that here you have one
more column named Timeout, where you can configure the specific time-out in
ms for each object exchanged.

Plugins

Communication Modules Range Overview
The communication modules (plugins) that can be added are displayed in the
Catalog window.

Drag the communication module into the Plugins element.

Example of RS-232 configuration window:

Example of Profibus DP configuration window:

MODBUS FC
GENERAL

Settings Start address: 0 (1 … 65536)

Polling time: 0 ms (0 = Continuous Read)

Time out: 1000 ms

RS232 CONFIGURATION

Baud rate 9600 b/s

19200 b/s

38400 b/s

57600 b/s

115200 b/s

Modbus Master (for field)

Mode

Serial Mode E,8,1 (Even parity, 8 data bits, 1 stop bit)

Modbus Slave

PROFIBUS DPV0 CONFIGURATION
GENERAL

Profibus Station Settings

PB MST TX - INPUT PB MST RX - OUTPUT PI DIAG TX - INPUT PI DIAG RX - OUTPUT

Service Mode Enabled

Word Swap

Consistency

Identification Nr. 65535

DP Address (1...126) 1

9MA10256.04 87

Managing Resources Elements

Communication Modules References
Reference Description Terminal type Compatible

controllers

EVS00CA000000 CAN 2 screw terminal blocks AV•••••••6•500

AV••••••50500

FREE Evolution(1)

EWCM 9000 PRO
(HF)(2)

EVS0LON000000 LonWorks 1 screw terminal block

EVS00R4000000 Modbus SL (RS-485) 2 screw terminal blocks

EVS10R2000000 RS-232 serial link, Relay output 1 SUB-D 9

1 screw terminal block

EVS00BM000000 Modbus SL, and BACnet MS/TP 2 screw terminal blocks

EVS00ET000000 Ethernet, Modbus TCP, and BACnet/IP 1 RJ45 AV••••••50500

FREE Evolution(1)EVS00EB000000 Ethernet, Modbus TCP, BACnet/IP, Modbus SL,
and BACnet MS/TP

1 RJ45

2 screw terminal blocks

EVS00PB000000 PROFIBUS 1 SUB-D 9 FREE Evolution(1)

(1) Not applicable to FREE Panel EVP

(2) Not applicable to EVS00R4000000

For further information about communication modules, refer to the FREE EVS
Plugin Instruction Sheet 9IS54405.

88 9MA10256.04

Managing Resources Elements

https://www.eliwell.com

Technical Reference
What’s in This Chapter

Modbus Protocol ...89

Modbus Protocol

Overview

Introduction
The transmission mode used is RTU. The frame does not contain message
header and end of message bytes.

Slave address Request code Data CRC16

The data is transmitted in binary code.

CRC16: cyclic redundancy check.

The end of the frame is detected on a silence greater than or equal to three
characters.

Principle
Only one device can transmit on the line at a time.

The master manages the exchanges and only it can take the initiative.

It interrogates each of the slaves in succession.

No slave can send a message unless it is asked to do so.

The master repeats the question when there is an incorrect exchange, and
declares the interrogated slave unavailable if no response is received within a
given time period.

If a slave does not receive a message, it sends an exception response to the
master. The master may or may not repeat the request.

Direct slave-to-slave communications are not possible.

For slave-to-slave communication, the application software must therefore be
designed to interrogate a slave and send back data received to the other slave.

The 2 types of dialogue are possible between master and slaves:
• The master sends a request to a slave and waits for its response
• The master sends a request to all slaves without waiting for a response

(broadcasting principle)

Addresses
Address specification:

• The device Modbus address can be configured from 1 to 247.
• Address 0 coded in a request sent by the master is reserved for broadcasting.

Slave devices take account of the request, but do not respond to it.

9MA10256.04 89

Technical Reference

Data Types

Description
Information is stored in the Slave device in four different types: two types are on/
off discrete values (coils and contacts) and two are numerical values (registers).

• Discrete Input Contacts (read only), 1-bit.
• Discrete Output Coils (read/write), 1-bit.
• Analog Input Registers (read only), 16-bit.
• Analog Output Holding Registers (read/write), 16-bit.

To handle more complex data types (like 32-bit integers or floating point), you
have to use two or more consecutive registers and read or write them together.

Function Codes

Description
The Modbus protocol specifies different “function codes” for each Modbus
message:

• 01 (01 hex): Read Discrete Output Coils.
• 05 (05 hex): Write single Discrete Output Coil.
• 15 (0F hex): Write multiple Discrete Output Coils.
• 02 (02 hex): Read Discrete Input Contacts.
• 04 (04 hex): Read Analog Input Registers.
• 03 (03 hex): Read Analog Output Holding Registers.
• 06 (06 hex): Write single Analog Output Holding Register.
• 16 (10 hex): Write multiple Analog Output Holding Registers.

90 9MA10256.04

Technical Reference

Programming
What’s in This Part

The Programming Tab ..92
Project Options .. 101
Managing Project Elements .. 114
Editing the Source Code ... 143
Compiling .. 172
Launching the Application ... 176
Simulation ... 186
Debugging... 194
Language Reference .. 247

9MA10256.04 91

The Programming Tab
What’s in This Chapter

Overview of the Programming Window..92
Menu Bar..94
Toolbars ...95

Overview of the Programming Window

Start-up and Test
Before using electrical control and automation equipment for regular operation
after installation, the system should be given a start-up test by qualified personnel
to verify correct operation of the equipment. It is important that arrangements for
such a verification be made and that enough time is allowed to perform complete
and satisfactory testing.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Verify that the installation and set up procedures have been completed.
• Before operational tests are performed, remove the blocks or other

temporary holding means used for shipment from the component devices.
• Remove tools, meters, and debris from equipment.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

General Description
The Programming work environment has various windows for developing the
controller application (for example programming in IEC 61131-3 compatible
languages), testing, debugging, and controller application downloading to the
target device.

In the Programming, you have two download possibilities:

• Download only the controller application by clicking On-line > Download
code.

• Download the project (which includes the controller application, the BIOS and

PLC parameters, and their value by default) by clicking Download all
icon in the project toolbar.

WARNING
AUTOMATIC RESTART OF CONTROLLER
• Do not download your application without first accessing the state of your

machine or process.
• Do not download your application without first ascertaining that there is no

risk of injury to anyone in or around your machine or process.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

92 9MA10256.04

The Programming Tab

The windows are listed below:

Item Description

1 Toolbars Many functions available in menus are displayed here in form of icons in toolbars.

These icons help you to create the application. The most used are in Main and Project
toolbars.

For information about how to manage the toolbars, refer to Toolbars, page 36.

2 Local variables window The global and local variables of the code displayed in the source code editor (programs,
function blocks, and functions) appear here.

For more information about how to use the Local variables window, refer to Variables, page
117.

3 Project window This window enables you to:
• Manage the application code.
• Manage and define complex variables defined by you.
• Manage the target device menu.

For information about how to use the Project window, refer to Project Window, page 114.

4 Source code editor This window enables you to manage, edit, and use file/print source to write in any of the five
programming languages defined by the IEC 61131-3 standard.

The definition of both global and local variables is supported by specific spreadsheet-like
editors.

For information about how to use the source code editor, refer to Editing the Source Code,
page 143.

5 Watch window This window enables you to manage variables debugging by displaying their status in
numerical format when the application is running and connected to the target device.

For more information about how to use the Watch window, refer to Watch Window, page 194.

6 Library Tree window The Library Tree window contains a set of different library objects, excepts for two generic
folders which are default for any project. These two folders are Operator and Blocks folder
and Target folder which are colored in green.

Each object is grouped into the folder to which it belongs. These folders are useful to group the
library elements logically.

To display the properties of an object, right-click its name and select Object Properties
command. The Properties Window appears and displays its properties.

For information about how to manage libraries, refer to Working with Libraries, page 109.

C:\My Project\My Project.plcprj

Preprocessing Regul and Control completed.
Preprocessing Application completed.
Preprocessing Communication completed.
Preprocessing Pumping completed.
Preprocessing display completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

Operator and standard blocks Target variables Target blocks

Operators and blocks

ABS
ACOS
ADD
ADR
AND
ASIN
ATAN

ATAN2
CEIL
CONCAT
COS
COSH
DELETE
DIV

EQ
EXP
FIND
FLOOR
GE
GT
IMOVE

Project

Configuration Programming Display Commissioning

Ready EDIT MODE NOT CONNECTED....

File Project On-line Debug Variables Window HelpToolsViewEdit

My Project

Tasks
Global_vars
main

Watch

Symbol Value

Library tree

Project libraries

Application
basic

Regul and Control
Pumping
display
Communication

Local variables

Name Type Address Array Init value Attribute

0001

0003
0002 cnt := cnt + 1;

main

7 8

2 4 6

5

Free Studio Plus

13

Operators and blocks
Target

9MA10256.04 93

The Programming Tab

Item Description

7 Output window This tool window shows the messages relating to the development of the project. For more
details, refer to Output window description, page 94.

8 Operators and blocks
window

This tool enables you to manage default function libraries or function libraries created by you.

The window is divided into various tabs, one for each library.

The following tabs are always available:
• Operator and standard blocks: operators (AND, OR, and so on).
• Target variables: specific variables of the target device.
• Target blocks: specific functions of the target device.

Additional tabs are managed by using the menu Project > Library manager.

Output Window
This tool window shows the messages relating to the development of the project.

The window is divided into five tabs:
• Build: information related to the file opening, compilation errors, and

downloading code to a device.
• Find in project: result of the Find in project activity.
• Debug: information about debugging activities (for example breakpoints).
• Resources: messages related to the target device.
• HMI Output: messages related to Display activity.

NOTE: The connection to the target device is also visible in the status bar,
page 35.

Menu Bar

Overview
The menu bar of Programming tab is composed of these menus:

• File, page 28
• Edit, page 27
• View, page 33
• Project, page 30
• On-line, page 29
• Debug, page 26
• Scheme, page 31
• Variables, page 32
• Window, page 34
• Tools, page 32
• Help, page 28

NOTE: Programming has a multi-document interface (MDI), so you may find
some disabled commands or even some unavailable menus, depending on
what kind of document is currently active.

94 9MA10256.04

The Programming Tab

Toolbars

Introduction
The toolbars appear at the top of the FREE Studio Plus window to provide access
to frequently used functions.

The description of commands is displayed in the lower left corner of the main
window when you place the mouse tracker on the command icon.

Main Toolbar
The main toolbar has the following buttons:

Icon Description Shortcut

Undo

Click once to undo the most recent action in the program editor.

Click the down arrow and select an action from the list to undo all
actions up to and including the selected action.

You can undo up to 10 actions.

Ctrl+Z

Redo

Click once to cancel the most recent Undo action.

Click the down arrow and select an action from the list to redo all
actions up to and including the selected action.

You can redo up to 10 actions.

Ctrl+Y

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Find Ctrl+F

Find next F3

Find in project Ctrl+Shift+F

Go to symbol Shift+F12

Print

Print the content of the current editor window.

Ctrl+P

Print preview -

Workspace Ctrl+W

Output Ctrl+R

Operators and blocks Ctrl+L

9MA10256.04 95

The Programming Tab

Icon Description Shortcut

Show or hide Library Tree bar

Watch Ctrl+T

Oscilloscope Ctrl+K

PLC run-time status bar -

Cross reference window -

Object Properties window -

Full screen Ctrl+U

Project Toolbar
The project toolbar has the following buttons:

Icon Description Shortcut

Compile F7

Simulation mode -

Connects to the target -

Code download F5

Halt -

Cold restart -

Warm restart -

Hot restart -

Reboot target -

Object browser -

Library manager -

Refresh all libraries -

Object properties -

96 9MA10256.04

The Programming Tab

Icon Description Shortcut

Insert record -

Delete record -

Debug Toolbar
The debug toolbar has the following buttons:

Icon Description Shortcut

Live debug mode -

Add/remove trigger F9

Add/remove graphic trigger Shift+F9

Remove all triggers Ctrl+Shift+F9

Triggers list Ctrl+I

Add/remove a breakpoint F12

Remove all breakpoints -

Run -

Step -

Breakpoint list -

FBD Toolbar
The FBD toolbar has the following buttons:

Icon Description Shortcut

Move/Insert -

Connection -

Watch -

New block -

Variable -

Constant -

9MA10256.04 97

The Programming Tab

Icon Description Shortcut

Expression -

Return -

Jump -

Comment -

Increase pins Ctrl++

Decrease pins Ctrl+-

Add Enable Input/Output pins -

FBD properties -

View source -

SFC Toolbar
The SFC toolbar has the following buttons:

Icon Description Shortcut

New step -

New transition -

New jump -

Add a step and a transition above the selected step -

Add a step and a transition below the selected step -

Add pin to divergent position -

Remove pin from divergent position -

Add pin to convergent position -

Remove pin from convergent position -

Add pin to simultaneous divergent transition -

Remove pin from simultaneous divergent transition -

Add pin to simultaneous convergent transition -

Remove pin from simultaneous convergent transition -

98 9MA10256.04

The Programming Tab

Icon Description Shortcut

Remove space before rightmost pin -

Add space before rightmost pin -

Move a transition up -

Move a transition down -

New action -

New transition code -

LD Toolbar
The LD toolbar has the following buttons:

Icon Description Shortcut

Parallel contact before -

Parallel contact after Shift+P

Serie contact before -

Serie contact after Shift+C

Coil Shift+O

Open object O

Negated object C

Positive object P

Negative object N

Reset object R

Set object S

Set output line -

New branch -

Network Toolbar
The Network toolbar has the following buttons:

9MA10256.04 99

The Programming Tab

Icon Description Shortcut

Insert top -

Insert bottom -

Insert after -

Insert before -

View grid -

Auto connect -

100 9MA10256.04

The Programming Tab

Project Options
What’s in This Chapter

Project Options ... 101
Working with Libraries ... 109

Project Options

General Information
You can edit significant project options choosing Project > Options….

General Tab

Overview
General tab of the Project options window:

You can set general project information:
• Project name
• Project version
• Project author name
• Project note

In addition, you can set compatibility options:
• Use legacy LD editor: the new Ladder Diagram editor is easier to use, by

helping you in common operations working on the diagram is faster and more
efficient. By default, this option is active. For more information, refer to Ladder
Diagram (LD) Editor, page 150.

• Use customizable workspace: allows you to manage your project tree in
order to reach a more efficient workspace. By default, this option is active. For
more information, refer to Project Custom Workspace, page 139.

In addition, you can set compatibility options:

Project options

OK Cancel Apply ?

Project info

Author:

Note:

Project: MyProject (max 10 chars)

Version: (example: 1.0)

Legacy options

Use customizable workspace

Use legacy LD editor

Main features

Multiple files project (.xplc)

Others

Custom sort of project folders

Cross Reference Run-time checks AdvancedBuild events
Download DebugBuild outputCode generationGeneral

9MA10256.04 101

Project Options

• Use legacy LD editor: the new Ladder Diagram editor is easier to use, by
helping user in common operations working on the diagram is faster and
more efficient. By default, this option is active. For more information, refer to
Ladder Diagram (LD) Editor, page 150.

• Use customizable workspace: allows user to manage the project tree in
order to reach a more efficient workspace. By default, this option is active. For
more information, refer to Project Custom Workspace, page 139.

• Multiple files project: allows user to save project in *.xplc format.
• Custom sort of project folders: enables Move up and Move down

commands in the context menu of the folder, in the project tree.

Code Generation Tab

Overview
Code generation tab of the Project options window:

You can edit some properties about code generation:
• Case sensitivity: you can set the project as case-sensitive checking this

option.
NOTE: By default, this option is not active.

• Check function and function block external variables: if this option is
disabled, all functions and function blocks can access to global variables
without declaring them as external variables.

NOTE: By default, this option is enabled respecting the IEC 61131-3
standard.

Project options

OK Cancel Apply ?

Case sensitivity (IEC default=no)

Check functions and function blocks external variables

Strict enumerations check

VAR_IN_OUT by reference (IEC standard=yes)

Allow only integer indexes for arrays

Strict pointers check

Enable WAITING statement (extension to IEC standard)

Enable SFC control flags (extension to IEC standard)

Init to zero of functions internal variables

Enable preprocessor directives (extension to IEC standard)

Enable Verbose warning mode

Disable warning emission

Data copy size warning threshold (bytes, 0=disable) 200

+Disabled warning codes:

-

Cross Reference Run-time checks AdvancedBuild events
Download DebugBuild outputCode generationGeneral

102 9MA10256.04

Project Options

• VAR_IN_OUT by reference: if this option is checked the variables declared
as VAR_IN_OUT of a function block will be treated as reference variables,
accordingly to IEC standards.

• Allow only integer indexes for arrays: if this option is checked you cannot
use BYTE, WORD or DWORD as array indexes.

• Strict pointers check: if this option is checked, it is not possible to mix
different pointer types and integer values.

• Strict enumerations check: if this option is checked, it is not possible to mix
enumerative variables and integer types.

• Enable WAITING statement (extension to standard): if this option is
checked the WAITING construct for the ST language is added as IEC 61131-
3 extension. For more information, refer to Waiting Statement, page 300.

• Enable SFC control flags (extension to standard): if this option is checked,
HOLD and RESET flags for SFC POU are enabled.

• Init to zero of function internal variables: if this option is checked, the initial
value of the internal variables of the functions will be set to zero as default.

• Data copy size warning threshold (bytes, 0=disable): when arrays or
structures are copied, if their dimensions exceed the specified threshold, a
message is emitted in order to inform the possible loss of performance of the
PLC. If the threshold is set to 0, no messages are emitted.

• Enable preprocessor directives (extension to IEC standard): if this option
is checked, IFDEF feature is enabled (user can allow build of portion of code
verifying if a certain symbol has been defined).

• Enable verbose warning mode: if this option is checked, several minor
warning, related to operation between signed and unsigned variables, are
emitted (for example, a>=b, where a is INT and b is UINT, will raise a warning
if this option is enabled); if this option is disabled those warnings are not
emitted.

• Disable warning emission: if this option is checked message emissions are
not displayed on the output window.

• Disable warning codes: if this option is checked some specified message
emissions are not displayed on the output window.

9MA10256.04 103

Project Options

Build Output Tab

Overview
Build output tab of the Project options window:

Here you can edit some significant properties of the output files generated by
compiling operation.

Downloadable target files section:
• Create downloadable target files: if this option is checked the compiler

generates the binary files that can be downloaded to the target. You can
specify custom filenames or use the default names.
Only valid Windows filename are accepted.

• PLC application (active only if Create downloadable target files is
checked): this field specifies the name of the PLC application binary file. The
default name is projectname.bin.

• Source code (active only if Create downloadable target files is checked):
this field specifies the name of the Source code binary file. The default name
is projectname._source.bin.

• Debug (active only if Create downloadable target files is checked): this
field specifies the name of the Debug symbol binary file. The default name is
projectname._debug.bin

Listing, reports etc section:
• Generate code listing file (.lst): if this option is checked the compiler

generates a listing file named as projectname.lst.
• Generate mapped variables export file (.exp): if this option is checked the

compiler generates an EXP file named as projectname.exp.
• Generate unused elements report (.unu .xml): if this option is checked the

compiler generates two reports of unused elements named as projectname.
unu and projectname.xml.

Project options

OK Cancel Apply ?

Downloadable target files

MyProject.bin

Create downloadable target files

PLC application:

Source code:

Debug

MyProject_source.bin

MyProject_debug.bin

Listings, reports etc:

Generate code listing file (.lst)

Generate mapped variables export file (.exp)
Generate unused elements report (.unu .xml)

Cross Reference Run-time checks AdvancedBuild events
Download DebugBuild outputCode generationGeneral

104 9MA10256.04

Project Options

Debug Tab

Overview
Debug tab of the Project options window:

Here user can edit some significant properties of the debug behavior:
• Polling period for debug function (ms): set the active sampling period of

the debug status.
• Number of displayed array elements without alert message: specifies the

maximum number of array elements to be added in the watch window without
being alerted.

• Polling period between more variables (ms): set the delay between
sampling of variables.

• Autosave watch list: if checked the watch list status is saved into a file when
the project is closed.

• Enable memory dump: enables the memory dump function for advanced
debugging.

• Watch internal variables of function blocks: allows user to view internal
variables of “VAR” class.

• Automatically dereference pointers and references in watch: if this option
is checked, when adding the pointer variable in the watch window, the pointed
value will be directly shown; if it is disabled, the watch window will show the
content of the pointer which need to be expanded to see the pointed value.

• Print debug informations: when compiling, additional information are shown
in the output window.

Project options

OK Cancel Apply ?

Polling period for debug functions (ms) 20

0

20

Number of displayed array elements
without alert message

Polling period between more variables (ms)

Autosave watch list

Enable memory dump (%MW<address> syntax)

Watch internal variables of function blocks

Automatically dereference pointers and references in watch

Print debug informations

Cross Reference Run-time checks AdvancedBuild events
Download DebugBuild outputCode generationGeneral

9MA10256.04 105

Project Options

Build Events Tab

Overview
Build events tab of the Project options window:

Here you can specify commands that run before the build starts or after the build
finishes. You can also use a set of defined environment variables listed on the top
of the window.

The environment variables are:
• PRJTITLE: project name.
• PRJPATH: project folder.
• PRJBASENAME: project full path without extension.
• PRJFULLNAME: project full path.
• IMGNAME: .imgx image file name.
• TARGETDEFNAME: project target name.
• PRJRELEASE: project name as defined in General tab of Project options.
• PRJVERSION: project version as defined in General tab of Project options.
• PRJAUTHOR: project author as defined in General tab of Project options.
• PRJCONN: current communication settings.
• APPLPATH: full application path.
• SIMUL: if simulation mode 1, else 0.

Project options

OK Cancel Apply ?

PRJTITLE PRJPATH PRJBASENAME IMGNAME APPLPATH
TARGETDEFNAME FIRMWAREFILENAME PRJRELEASE
PRJVERSION PRJAUTHOR PRJCONN SIMUL

Post-build commands:

Pre-download commands:

Post-download commands:

Environment variables

Download DebugBuild outputCode generationGeneral
Cross Reference Run-time checks AdvancedBuild events

106 9MA10256.04

Project Options

Cross Reference Tab

Overview
Cross Reference tab of the Project options window:

Here you can activate the Generate cross-reference function and set the related
options.

The cross-reference trace options can be set for:
• Global Vars: Global variables
• Local Vars: Local variables
• Programs: Programs
• Functions: Functions
• Function Blocks: Function blocks
• Tasks: Tasks
• Macros: Macros
• Structs: Structures
• Enums: Enumerations
• Subrs: Subranges
• TypeDefs: Typedefs, used to create an alias name for another data type.

The cross-reference trace options can be set in:
• Programs
• Functions
• Function Blocks

Project options

OK Cancel Apply ?

Options

Trace Global Vars

Trace Programs

Trace Function Blocks

Trace Macros

Trace Enums

Trace TypeDefs

Trace in Programs

Trace in Functions Blocks

Trace in Functions

Trace Local Vars

Trace Functions

Trace Tasks

Trace Structs

Trace Subrs

Generate cross-reference

Download DebugBuild outputCode generationGeneral
Cross Reference Run-time checks AdvancedBuild events

9MA10256.04 107

Project Options

Run-time Checks Tab

Overview
Run-time Checks tab of the Project options window:

Project options

OK Cancel Apply ?

Run-time check of array bounds

Run-time check of division by zero

Run-time check of references

Run-time check of pointers

Download DebugBuild outputCode generationGeneral
Cross Reference Run-time checks AdvancedBuild events

These options allow the user to enable specific controls made at execution time.

The run-time check options can be set for:
• Run-time check of array bounds: if this option is checked some check code

is added to verify that array indexes are not out of bounds during run-time.
This option can be set depending on target device.

• Run-time check of pointers: this combo allows you to choose if and when
the pointer will be tested for their validity before their use.
◦ Selecting NONE, the check will never be done.
◦ Selecting ONLY IF NOT NULL, the check will verify that the pointer value

is not NULL; if it is NULL, it will return value zero but will not stop the
running application. So the PLC execution will never be interrupted due to
a NULL pointer, but you’ll never get an error notification.

◦ Selecting FULL, the check will verify that the pointer value is not NULL and
that the pointed address is within a validity range (this last control requires
the user-defined function checkptr on target; if it is not defined, only the
first control is executed). If one of this two controls fail, the PLC execution
is interrupted and an error message is raised.

• Run-time check of division by zero: if this option is checked some check
code is added to verify that divisions by zero are not performed on arrays
during run-time. This option can be set depending on target device.

• Run-time check of interfaces: if this option is checked, allows a references
validity check within a method call. This option can be set depending on
target device (Object Oriented supported)

• Run-time check of references: if this option is checked, allows a references
validity check; if a reference is dereferenced to null, a runtime error is
generated.

108 9MA10256.04

Project Options

Advanced Tab

Overview
Advanced tab of the Project options window:

Project options

OK Cancel Apply ?

LD: evaluate edges on each network

External access to local vars of function blocks

Download DebugBuild outputCode generationGeneral
Cross Reference Run-time checks AdvancedBuild events

These options allow the user to specify specific behaviors, suggested only for
expert users.

• LD evaluate edges on each network: this option allows the user to change
edges evaluation timing (high/low). If it is NOT checked, the edges of an LD2
program are evaluated only once, at the beginning of the program execution.
If it is checked, the edges of an LD2 program are evaluated at the beginning
of every LD network.

• External access to local vars of function blocks: if this option is NOT
checked, the local variables of a function block, are considered private and
accessible only inside the function block. (standard IEC behavior). If this
option is checked, the local variables of a function block are considered as IN/
OUT variables; so they are visible and accessible also from the caller of the
function block instance.

Working with Libraries

General Information
Libraries are a powerful tool for sharing objects between the projects. Libraries are
stored in dedicated source file, whose extension is .pll.

Library Manager

Overview
The library manager lists the libraries currently included in the project. It also
allows you to include or remove libraries.

To access the library manager, click Project > Library manager.

9MA10256.04 109

Project Options

Including a Library
The following procedure presents how to include a library in a project, which
results in the library’s objects becoming available to the current project.

Including a library means that a reference to the library’s .pll file is added to the
current project, and that a local copy of the library is made. You cannot edit the
elements of an included library, unlike imported objects.

To copy or move a project which includes one or more libraries, make sure that
references to those libraries are still valid in the new location:

Step Action

1 Click Project > Library manager, which opens the Library manager dialog box.

2 Click the Add button, which causes an explorer dialog box to appear, to let you select
the .pll file of the library you want to open.

3 When you have found the .pll file, open it either by double-clicking it or by clicking the
Open button. The name of the library and its absolute pathname are now displayed in a
new row at the bottom of the list.

4 Repeat step 1, 2, and 3 for the libraries you wish to include.

5 When you have finished including libraries, click the Close button.

Removing a Library
Removing a library does not delete the library itself, but removes the reference to
it in the project.

The following procedure presents how to remove an included library from the
current project:

Step Action

1 Click Project > Library manager menu of the Programming main window, which
opens the Library manager dialog box.

2 Select the library you wish to remove by clicking its name once. The Remove button is
now enabled.

3 Click the Remove button, which causes the reference to the selected library to be
deleted from the Project library list.

4 Repeat for the libraries you wish to remove. Alternatively, if you want to remove the
libraries, you can click the Remove all button.

5 When you have finished removing libraries, click the Close button.

110 9MA10256.04

Project Options

Exporting to a Library

Overview
You may export an object from the currently open project to a library in order to
make that object available to other projects.

The following procedure presents how to export objects to a library:

Step Action

1 Select the object you want to export in the tree structure of the project tab.

2 Click Project > Export object to library.

You can also right-click the object and select Export object to library command.

A dialog box appears:

3 Enter the destination library by specifying the location of its .pll file. You can do this by:
• Typing the full pathname in the text box.

NOTE: If you enter the name of a non-existing .pll file, FREE Studio Plus
creates a new library.

• Clicking the Browse button in order to open an explorer dialog box which
allows to browse your disk and the network.

4 You may optionally choose to encrypt the source code of the POU you are exporting in
order to protect your intellectual property.

You can also modify the version number and add a description.

5 Click OK to confirm the operation, otherwise, click Cancel to quit.

Importing from a Library or Another Source

Overview
You can import an object from a library in order to use it in the current project.
When you import an object from a library, the local copy of the object loses its
reference to the original library and it belongs exclusively to the current project.
You can edit imported objects, unlike objects of included libraries.

Import Example
The following procedure presents how to import objects from a library:

Export PLC objects to library

OK Cancel

Description

Version 1.0.0

Code encryption

...File name

9MA10256.04 111

Project Options

Step Action

1 Click Project > Import objects. This causes an explorer dialog box to appear, which
lets you select the .pll file of the library you want to open.

2 When you have found the .pll or .plclib file, open it either by double-clicking it or by
clicking the Open button.

A dialog box of the library explorer appears:

3 Select the objects you want to import. You can also make simple queries on the objects
by using Filters. However, only the Name filter currently applies to libraries. To use it,
enter the name of the desired objects, even using the * wildcard, if necessary.

4 Select the objects you want to import then click the Import objects button.

5 When you have finished importing objects, click indifferently OK or Cancel to close the
browser.

Undoing Import from a Library
When you import an object in a project, you currently make a local copy of that
object. You need to delete the local object in order to undo import.

Merge Function
When you import objects in a project or insert a copied mapped variable, you may
encounter an overlapping address or duplicate naming error.

You can choose the behavior that FREE Studio Plus should keep when
encountering those problems by setting the corresponding environment options,
page 40.

The possible actions are:

Behavior Ask Automatic Take from library Do nothing

Naming
behavior

If different types ✓ ✓ - ✓

If same type but
not variables

✓ ✓ ✓ -

If both variables ✓ ✓ ✓ -

Close Import objects

Object browser

Select all Select noneEnable merge method

Other filters

Vars group

Vars type All

Library

Location All

Name * OK

Objects filter

Check all Check none

Function Blocks

User types

Operators

Standard functions
Local variables

Programs

Functions
Variables

Name

AHUPlanModeStrategy
AHUTempCntrlStrategy
CompAlarmMgmt
CompAppLimit
CompCntrl_OnOff
CompCntrl_Slider

Type

CompCntrl_VS
CompMgmt
CompMgmtVS
COPCalculation
Counter2Energy
DoubleInterpo_5x8
EcFanMgmt
EnergyTrend
FanMgmt

Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks

Basic types

112 9MA10256.04

Project Options

Behavior Ask Automatic Take from library Do nothing

Address
behavior

If address
overlaps

✓ ✓ ✓ -

Copy/paste
mapped variable

- ✓ - ✓

Ask (default): User has to decide every time an action is required

Automatic: A valid name or address is automatically generated by FREE Studio Plus and assigned
to the imported object.

Take from library: The name or the address is taken from the imported object.

Do nothing: The name or the address of the objects in the project are not modified.

After importing objects, FREE Studio Plus generates a log file in the project folder
with detailed info.

Updating Existing Libraries

Overview
If you edit a linked library file, you can refresh its content on the project without
closing FREE Studio Plus:

Step Action

1 Click Project > Refresh all libraries.

2 If the file is correct, FREE Studio Plus updates the linked library content and displays a
successful message in the output window, otherwise no modifications are made on the
existing linked library.

9MA10256.04 113

Project Options

Managing Project Elements
What’s in This Chapter

Project Window ... 114
Program Organization Units ... 115
Variables .. 117
Tasks ... 125
Derived Data Types ... 127
Browse the Project .. 133
Project Custom Workspace.. 139

Project Window

Overview
This chapter explains how to manage with the elements which compose a project,
namely: Program Organization Units (POUs), tasks, derived data types, and
variables.

The Project window allows you to:
• Manage the application code.
• Manage and define complex variables that you define.
• Manage the tasks.

Content of the Project Window
The default Project window consists of the following items:

Item Icon Description

Project Name of the project.

main, page 115 Initial program.

Var1, page 122 - Local variable.

Ungrouped_vars,
page 118

Group of global variables.

Aux Variables - The shared global resources appear in the Project window
but are defined in the Resources window.

EEPROM Parameters, Status variables, and I/O Mapping
appear here (as they are auto-generated).

Tasks, page 125 - Creates tasks.

NOTE: The Project window content depends on the selected device.

114 9MA10256.04

Managing Project Elements

Program Organization Units

Overview

Description
A POU is a Program Organization Unit of type Program, Function, or Function
block.

This section presents how to add, edit, and remove POUs in the project.

Creating a Program

Description
To create a program:

Step Action

1 Select the target in the Project Window tree view.

Click Project > New Object > New program.

2
A dialog box is displayed:

Select the specific language.

3 Enter its name.

4 Optionally, select a task in the list to associate the program to the selected task.

NOTE: If you do not select a task at this step, an alert icon appears below the
program icon to indicate that the program is not yet associated to a task.

Refer to Associating a Program to a Task, page 125 to assign the program to the
desired task.

5 Click the OK button to confirm.

Alternatively, you can create a new POU from the context menu by selecting a
folder or the root element of the project. For more information, refer to Custom
Workspace Operations, page 141.

Creating a Function Block/Function

Description
To create a Function Block/Function:

New program

Language

IL FBD LD SFCST

Name

Task

Assign to -

OK Cancel

9MA10256.04 115

Managing Project Elements

Step Action

1 Select the target in the Project Window tree view.

For Function Block, click Project > New Object > New function.

For Function, click Project > New Object > New function block.

2
A dialog box is displayed:

Select the specific language.
NOTE: Creating functions is available in four programming languages. SFC language
is not supported for functions.

3 Enter its name.

4 Click the OK button to confirm.

A function or function block is a (sub)program with inputs and outputs:
• A function requires n inputs and a single output (RESULT) with the same

name as the function. The local memory of the function is initialized each time
the function is called.
The function is used within the program by passing the input variables.

• A function block requires n inputs and m outputs. The local memory of each
instance of the function block is kept between one call and the next (static
memory).
The function block is used within the program as an instance in the same way
as the declaration of a variable.

Each function or function block can be used within a program by dragging and
dropping the icon into the editor window of the program.

Editing POUs

Overview
To edit a POU, open it by double-clicking it from the project tree. The relative
editor opens and lets you modify the source code of the POU.

Changing the Name of the POU
Select a POU from the project tree, then right-click and select Rename program,
Rename function block, or Rename function depending on the POU.

Duplicating a POU
Select a POU from the project tree, then click Project > Duplicate object.

Enter the name of the new duplicated POU and confirm the operation.

New program

Language

IL FBD LD SFCST

Name

OK Cancel

116 9MA10256.04

Managing Project Elements

Deleting POUs
Select a POU from the project tree, then click Project > Delete Object.

Confirm the operation to delete the POU.

Source Code Encryption/Decryption

Overview
Programming can encrypt POUs and require a password to decrypt them, hiding
the source code of the POU.

Encrypting a POU
Select a POU from the project tree, right-click, then select Crypt in the context
menu

Double enter the password and confirm the operation.

Programming displays in the project tree a special marker icon that overlays the
standard POU icon in order to inform you that the POU is encrypted.

Decrypting a POU
Select a POU from the project tree, right-click, then select Decrypt in the context
menu

Encrypting all POUs
Select the target from the project tree, right-click, then select Crypt all objects in
the context menu.

All POUs are encrypted with the same password.

Decrypt all POUs
Select the target from the project tree, right-click, then select Decrypt all objects
in the context menu.

Variables

Overview
There are two classes of variables in Programming: global variables and local
variables.

This section presents how to add to the project, edit, and remove both global and
local variables.

9MA10256.04 117

Managing Project Elements

Global Variables

Description
Global variables can be seen and referenced by any POU of the project.

Classes of Global Variables
Global variables are organized in special folders of the project tree called Global
variables group.

Those variables are classified according to their properties as:
• Automatics: the compiler automatically allocates them to an appropriate

location in the target device memory.
• Mapped: they have an assigned address in the target device logical

addressing system, which you specify.
• Constants: are declared having the CONSTANT attribute; their values cannot

be altered by the programming logic.
• Retains: they are declared having the RETAIN attribute; their values are

stored in a persistent, non-volatile memory area of the target device.

Creating a New Global Variable
Creating a New Global Variable

Step Action

1 In order to create a new global variable, you need to define at least one Global
variables group in your project. Afterward select it from the project tree then choose
the appropriate item of the menu Project > New Object > New variable. Refer to
Custom Workspace Operations, page 141.

Programming presents a dialog box:

2 Enter the name of the variable. The variable name must be a valid IEC 61131-3
identifier.

Valid variable names can consist of any combination of letters, numbers, and
underscores, though they cannot begin with a number.

New variable

AutoAttribute

Name

Init values

NoArray

Type

...

...

...

Description

OK Cancel

Group Ungrouped_vars

118 9MA10256.04

Managing Project Elements

Step Action

3
Specify the type of the variable either by typing it or by selecting it from the list that

Programming displays when you click the Browse button:

4

If you want to declare an array, you must specify its size by clicking the Browse
button next to the Array field:

Enter the length of the array. Use comma to separate the length of each dimension (up
to 3).

For example: 2 or 2,3 or 2,3,3.
NOTE: A dimension should be greater than 1. For example, entering 2,1 or 1,2 is
equivalent to entering 2.

5
You may optionally assign the initial value to the variable or to the single elements of

the array by clicking the Browse button next to the Init values field:

NOTE: Initial values must be separated by a comma.

6 Click the OK button to validate.

Creating a New Global Mapped Variable:

Close OK

Other filters

Vars group

Vars type All

Library All

Location All

Name * OK

Objects filter

Check all Check none

Function Blocks

User types

Operators

Standard functions
Local variables

Programs

Functions
Variables

Basic types

Name

BOOL
BYTE
DINT
DWORD
eCompTyp
ePrtyMode

Type Description

eStage
eType
INT
MBMNODESTATUS
REAL
SINT
stAlrmCtrl
stAna
stAuxPumpAlrm
stAuxPumpCom
stAuxPumpCtrlInit
stAuxPumpCtrlSta
stAvai
stCavtAlrm

Basic types
Basic types
Basic types
Basic types
User Types
User Types
User Types
User Types
Basic types
User Types
Basic types
Basic types
User Types
User Types
User Types
User Types
User Types
User Types
User Types
User Types

Alarm Control Structure
Real Value + Status
Auxiliary Pump Alarm Status
Command Status
Structure of Auxiliary Pump Initialisa...

Kind of values
Priority Mode Enumeration
Define of the Staging Methode

Auxiliary Pump Control Status
Available status

Object browser

Size of variable

Scalar

OK Cancel

Array / Matrix

Dimensions 2,3,3

Init values for: ()

OK Cancel

[0,1,2,1]

9MA10256.04 119

Managing Project Elements

Step Action

1 To create a newly global mapped variable, you need to define at least one Global
variables group in your project. Afterward select it from the project tree then choose
the menu Project > New Object > New variable > Mapped Variable.

Programming presents a dialog box:

2 Enter the name of the variable. The variable name must be a valid IEC 61131-3
identifier.

Valid variable names can consist of any combination of letters, numbers, and
underscores, though they cannot begin with a number.

3
Specify the type of the variable either by typing it or by selecting it from the list that

Programming displays when you click the Browse button:

4 You can select the group in the Group list.

5 You are required to specify the address of the variable by doing one of the following
operations:

Mapped variable declaration

Data block

Name

Subindex

NoSize

UNDEFData type

...

...

...

Description

OK Cancel

Group Ungrouped_vars

Location

...

I/O data block

Backlight Status. 0 = Off. 1...
Expansion Digital Inputs
Expansion Digital Outputs
Local ADC values
Local ADC values adjusted
Local Analog Inputs

Base addr. Size Unused

%QB3.0
%IX10.0
%QX11.0
%IW2.0
%IW20.0
%IW1.0

1
96
84
12
12
12

1
96
84
12
12
12

Close OK

Other filters

Vars group

Vars type All

Library All

Location All

Name * OK

Objects filter

Check all Check none

Function Blocks

User types

Operators

Standard functions
Local variables

Programs

Functions
Variables

Basic types

Name

BOOL
BYTE
DINT
DWORD
eCompTyp
ePrtyMode

Type Description

eStage
eType
INT
MBMNODESTATUS
REAL
SINT
stAlrmCtrl
stAna
stAuxPumpAlrm
stAuxPumpCom
stAuxPumpCtrlInit
stAuxPumpCtrlSta
stAvai
stCavtAlrm

Basic types
Basic types
Basic types
Basic types
User Types
User Types
User Types
User Types
Basic types
User Types
Basic types
Basic types
User Types
User Types
User Types
User Types
User Types
User Types
User Types
User Types

Alarm Control Structure
Real Value + Status
Auxiliary Pump Alarm Status
Command Status
Structure of Auxiliary Pump Initialisa...

Kind of values
Priority Mode Enumeration
Define of the Staging Methode

Auxiliary Pump Control Status
Available status

Object browser

120 9MA10256.04

Managing Project Elements

Step Action

• Click the Data block browser button to open the editor of the address;
then enter the desired value:

Click OK.
• Select, from the Location list, the memory area you want to use: the tool

automatically calculates the address of the first free memory location of that area.

6

Depending on the selected location, you can specify its size by clicking the
Browse button next to the Size field:

Enter the length of the array. Use comma to separate the length of each dimension (up
to 3).

For example: 2 or 2,3 or 2,3,3.
NOTE: A dimension should be greater than 1. For example, entering 2,1 or 1,2 is
equivalent to entering 2.

7 You can enter the subindex value.

8 Click the OK button to validate.

Editing a Global Variable
To edit the definition of an existing global variable, open it by double-clicking it, or
the folder that it belongs to, from the project tree. The global variables editor
opens and lets you modify its definition.

Variable address

Size
Bit

OK

Cancel

Automatic address

Double word (32 bit)
Word (16 bit)
Byte (8 bit)

Location

Output

Input

Memory

Data block Index
0 0.

Size of variable

Scalar

OK Cancel

Array / Matrix

Dimensions 2,3,3

9MA10256.04 121

Managing Project Elements

Changing the name of the variable:

Select the variable you want to rename from the project tree then right-click its
name and select Rename variable command. You can also double-click the
variable name and modify its name in the editor window. The new name must be
updated in all locations where the renamed variable is used.

Duplicating a variable:

Select the variable you want to duplicate from the project tree then right-click its
name and select Duplicate variable command.

Enter the name of the new duplicated variable and confirm.

Deleting a Global Variable
Select the variable you want to delete from the project tree then right-click its
name and select Delete variable command.

Confirm the operation to delete the variable.

Local Variables

Description
Local variables are declared within a POU (either program, function, or function
block), the POU itself being the only project element which can refer to and access
them.

Local variables are listed in the project tree under the POU which declares them
(only when that POU is open for editing). The local variables are further classified
according to their class (for example, as input or output variables):

Project

HMI samples

hmiAcceleration

hmiActualSpeed
hmiDeceleration
hmiElevatorOn
hmiElevatorStanding
hmiSpeed

Function blocks
Elevator
Loops
Elevator vars

hmiActualPosition

hmiTargetPosition
Name Type Address

hmiActualPosition
hmiHighSpeed
hmiAcceleration

DINT
DINT
REAL
REAL

%MD1.62
%MB1.58

%MB1.66
%MD1.70

hmiDeceleration

1
2
3
4
5 REAL %MD1.74

Function blocks
LinearProfileGen

Input variables
nomDec
stop
targPos

Local variables

actTargPos
decel
decSpace

Output variables
actAcc
actSpeed
enableOut

122 9MA10256.04

Managing Project Elements

In order to create, edit, and delete local variables, you have to open the POU for
editing and use the local variables editor. The project needs to be saved in order
to update the POU branch structure of the project tree, including the modifications
applied to the local variables.

For more information, refer to Opening a Local Variables Editor, page 167.

Creating Local Variables

Click Variables > Insert command or click the Insert record icon in the
Project toolbar. You can also create multiple variables, page 124.

The variable appears in yellow in the Local variables window, and you can define
its characteristics by clicking the respective boxes.

Created variables can be displayed in table format by selecting the icon on the
upper right corner of the window:

The characteristics of the local variables of a program are:
• Name: to choose the name of the variable.
• Type: to choose from one of the preset options or variables defined by you.
• Address: the default setting is Auto.
• Array: defines whether the variable is array type (if so, define its dimension)

or not.
• Init value: initial value. It is the value of the variable after each power cycle.
• Attribute: to set the variable as CONSTANT (variable cannot be overwritten)

or RETAIN.
• Description: to write a description for the variable.

NOTE: Local variable table has different formats for program and function
blocks.

Local variables

1
2
3
4
5
6

VAR1_OUT

7
8
9

10

Name Type Address Array Init value Attribute

VAR2_OUT
VAR3_OUT
VAR4_OUT
VAR5_OUT
VAR6_OUT
VAR7_OUT
VAR8_OUT

VAR9_OUT
VAR10_OUT

INT
INT
INT
INT
INT
INT
INT
INT

INT
INT

Auto
Auto

Auto
Auto
Auto
Auto
Auto
Auto

Auto
Auto

No
No

No
No
No
No
No
No

No
No

...

...

...

...

...

...

...

...

...

...

9MA10256.04 123

Managing Project Elements

Created variables can be displayed also in code format by selecting the second
icon on the upper right corner of the window:

The local variables appear in the Project window, below the program folder,
identified by an icon.

NOTE: The local variables are reinitialized each time the POU is executed.

Creating Multiple Variables

Description
Programming allows you to create multiple variables simultaneously.

Creating Multiple Variables:

Step Action

1 Open the POU for editing.

2 Select Variables > Create multiple.

A dialog box appears:

3 Specify the prefix and the suffix of the new variables names.

4 Specify the type of the variables either by typing it or by selecting it from the list that is

displayed when you click the Browse button.

Local variables

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016

PROGRAM main

VAR
 VAR1_OUT : INT;
 VAR2_OUT : INT;
 VAR3_OUT : INT;
 VAR4_OUT : INT;
 VAR5_OUT : INT;
 VAR6_OUT : INT;
 VAR7_OUT : INT;
 VAR8_OUT : INT;
 VAR9_OUT : INT;
 VAR10_OUT : INT;
END_VAR

Create multiple variables

Name

Counter

From:

OK Cancel

Prefix:

Suffix:

Type

Type:

Attribute

Attribute:

...

To: Step:

Example: VAR1_OUT VAR2_OUT VAR3_OUT VAR4_OUT

VAR

_OUT

INT

...

1 10 1

124 9MA10256.04

Managing Project Elements

Step Action

5 If needed, select the Attribute in the list.

6 Insert the number of the variables you want to create specifying the start index, the end
index, and the step value.

You can see an example of the generated variable names at the bottom of the dialog.

Tasks

Associating a Program to a Task

Overview
For a program to run, it must be associated to a task.

The following types of task are available:
• Boot task is executed only once at PLC start up.
• Init task executed at each download of the application and on starting up the

system (after Boot).
NOTE: The associated program initializes slaves and messages
according to the configuration, with fixed values that are independent of
the run time.

WARNING
AUTOMATIC RESTART OF CONTROLLER
• Do not download your application without first accessing the state of

your machine or process.
• Do not download your application without first ascertaining that there is

no risk of injury to anyone in or around your machine or process.
Failure to follow these instructions can result in death, serious injury,
or equipment damage.

• Timed task runs at regular intervals which you can set. The default setting
depends on target type.

NOTE: Modbus messages do not interfere with this task.
• Background task runs with low priority after the execution of the Timed

tasks.
• Modbus task executed to implement Modbus Master, calling relative function

blocks, and to send messages (Only for FREE Smart).

Associating a Program to a Task Type
Each new project has the main program associated to the Background task. The
main program can be removed and/or associated to other tasks.

To associate a program to a task:

9MA10256.04 125

Managing Project Elements

Step Action

1 Right-click on the task where you want to add the program from the project tree then
choose the Add program command.

2 Select the program you want to be executed by the task from the list which shows up
and confirm your choice.

3
The program has been assigned to the task:

Managing a Program into a Task
You can assign more than one program to a task.

Programs are executed sequentially, as they are assigned and visible in the tree.

When you right-click a program associated to a task, three actions are available:
• Remove program (Delete)
• Move up (Ctrl+Shift+Up)
• Move down (Ctrl+Shift+Down)

Move up and Move down allow you to change the execution order of the program
within the same task:

Task Configuration

Description
Depending on the target device, it is possible to modify settings of the controller
tasks.

Task Configuration
To configure a task:

Step Action

1 Right-click on the tasks element from the project tree.

2 Select Task configuration in the contextual menu.

Tasks
Timed

Elevator

Boot
Init

Background

Tasks
Timed

Elevator

Boot
Init

Background
Temperature

Remove program Delete

Move up Ctrl+Shift+UP
Move down Ctrl+Shift+Down

126 9MA10256.04

Managing Project Elements

Step Action

Result: The Tasks configuration window is displayed:

3 Select Yes in Set period list.

4 Enter a new value of period of the task.

5 Click Ok to validate

NOTE: For all other targets than FREE Advance, the duration of timed task
can be set on Configuration, clicking the target name on the tree. There is a
checkbox Set execution time in the main window.

Derived Data Types

Overview

Description
The Definitions section of the Workspace window lets you define derived data
types.

The derived data type is a complex classification that identifies one or various data
types and is composed of primitive data types.

You have the flexibility to create those specific types that have advanced
properties and uses in addition to the primitive data types.

Programming can manage:
• Typedefs, page 127
• Structures, page 129
• Enumeration, page 131
• Subranges, page 132

Typedefs

Description
The following paragraphs present how to manage TypeDef.

For more information about TypeDefs, refer to TypeDefs description, page 249.

Creating a New Typedef
To create a new TypeDef:

Tasks configuration

0
1
2

Timed
Name Type Set period Period (ms) Description

Background
Boot
Init

Cyclic
Cyclic
Single
Single

No
No

No
No

ID

3

0
100

0
0

Timed task - execution time can be configured between 20 and 100 ms
Background task - executes continuously at low priority
Boot task - executes once at system startup
Init task - executes once at every PLC full restart

OK Cancel

9MA10256.04 127

Managing Project Elements

Step Action

1 New TypeDef can be added in the Project window tree:
• Right-click on the name of the project.
• Click Add > New Definition > TypeDef.

A dialog box is displayed:

2 Enter the name of the TypeDef. The TypeDef name must be a valid IEC 61131-3
identifier.

Valid names can consist of any combination of letters, numbers, and underscores,
though they cannot begin with a number.

3 Specify the type of the TypeDef either by typing it or by selecting it from the list that is

displayed when you click the Browse button.

4

If you want to declare an array, you must specify its size by clicking the Browse
button next to the Array field:

Enter the number of elements of the array. Use comma to separate the number of
elements of each dimension (up to 3 dimensions).

For example: 2 or 2,3 or 2,3,3.
NOTE: A dimension must be greater than 1 to be relevant. For example, entering
2,1 or 1,2 is equivalent to entering 2.

5
You may optionally assign the initial value to the variable or to the single elements of

the array by clicking the Browse button next to the Init values field:

NOTE: Initial values must be separated by a comma.

New Typedef

Array No

Name

Type ...

Description

Init. Value

Title...

...

OK Cancel

Size of variable

Scalar

OK Cancel

Array / Matrix

Dimensions 2,3,3

Init values for: ()

OK Cancel

[0,1,2,1]

128 9MA10256.04

Managing Project Elements

Step Action

6 You can specify:
• An optional title.
• An optional description.

7 Click Ok to validate.

Editing a Typedef
To edit a TypeDef, double-click it from the Project window tree. The TypeDef is
displayed in the window where you can modify the values:

To modify a value, select it in the table then
• Enter a new value, or
• Click the browser button. A window appears to enter a new value.

To edit the properties of an existing TypeDef, right-click it from the Project window
tree and select Edit properties to open the associated editor.

To directly modify the name of the TypeDef, click it in the Project window tree
then click it again to open the name field. Enter the new name and press Enter to
validate.

To edit the properties of an existing TypeDef, right-click it from the Project window
tree and select Edit properties.

To display the properties of an existing TypeDef, right-click it from the Project
window tree and select View properties to open the associated Properties
Window.

Deleting a Typedef
To delete an existing TypeDef, right-click it from the Project window tree and
select Delete.

Structures

Description
The following paragraphs present how to manage structures.

For more information about Structure, refer to Structures description, page 250.

Creating a New Structure
To create a new Structure in the Project window tree:

Project
1 UINT8_T

Name Type
USINTProject

UINT8_T

Array
No

Init value
0

Description
8-bit

9MA10256.04 129

Managing Project Elements

Step Action

1 To create a new Structure, do one of the following operations:
• Right-click on the name of the project then click Add > New Definition >

Structure.
• Select the project in the Project window tree then, in the menu, click Project >

New object > New Definition > Structure
A dialog box is displayed:

2 Enter the name of the Structure.

3 You can specify:
• An optional title.
• An optional version number.
• An optional description.

4 Click Ok to validate.

Editing a Structure
To edit an existing Structure, double-click it from the Project window tree.

Right-click to insert or delete elements.

To modify a value, select it in the table then:
• Enter a new value, or
• Click the browser button. A window appears to enter a new value.

To edit the properties of an existing Structure, right-click it from the Project
window tree and select Edit properties to open the associated editor.

To directly modify the name of the Structure, click it in the Project window tree
then click it again to open the name field. Enter the new name and press Enter to
validate.

To display the properties of an existing Structure, right-click it from the Project
window tree and select View properties to open the associated Properties
Window.

Deleting a Structure
To delete an existing Structure, right-click it from the Project window tree and
select Delete.

New Structure

Description

Complex NumberTitle

1.0.0Version

COMPLEXName

OK Cancel

Complex Number

Project
1
2

Re
Name Type

Im
REAL
REAL

Project
COMPLEX

Pos.
0
1

Init value
0
0

Array
No
No

130 9MA10256.04

Managing Project Elements

Enumerations

Description
The following paragraphs show you how to manage enumerations.

For more information about Enumeration, refer to Enumerated Data Types, page
249.

Creating a New Enumeration
To create a new Enumeration:

Step Action

1 To create a new Enumeration, do one of the following operations:
• Right-click on the name of the project then click Add > New Definition >

Enumeration.
• Select the project in the Project window tree then, in the menu, click Project >

New object > New Definition > Enumeration
A dialog box is displayed:

2 Enter the name of the Enumeration.

3 You can specify:
• An optional title.
• An optional description.

4 Click Ok to validate.

Editing an Enumeration
To edit an existing Enumeration, double-click it from the Project window tree.

Right -click to insert or delete element.

To modify a value, select it in the table then:
• Enter a new value, or
• Click the browser button. A window appears to enter a new value.

To edit the properties of an existing Enumeration, right-click it from the Project
window tree and select Edit properties to open the associated editor.

New Enumeration

HYDROCARBONName

Title

Description

OK Cancel

Project
1
2
3

Methane
Name Init value

Butane
Octane

1
4
8

Project
HYDROCARBON

9MA10256.04 131

Managing Project Elements

To directly modify the name of the Enumeration, click it in the Project window
tree then click it again to open the name field. Enter the new name and press
Enter to validate.

To display the properties of an existing Enumeration, right-click it from the
Project window tree and select View properties to open the associated
Properties Window.

Deleting an Enumeration
To delete an existing Enumeration, right-click it from the Project window tree and
select Delete.

Subranges

Description
The following paragraphs present how to manage subranges.

For more information about Subrange, refer to Subranges description, page 250.

Creating a New Subrange
To create a new Subrange:

Step Action

1 To create a new Subrange, do one of the following operations:
• Right-click on the name of the project then click Add > New Definition >

Subrange.
• Select the project in the Project window tree then, in the menu, click Project >

New object > New Definition > Subrange
A dialog box is displayed:

2 Enter the name of the Subrange.

3 Specify the type of the Subrange either by typing it or by selecting it from the list that is

displayed when you click the Browse button.

4 You can specify:
• The minimum value.
• The maximum value.

New Subrange

OK Cancel

Min. Value 0

WATER_TEMPERATUREName

Max. Value 100

Type ...INT Title

Description Temperature

132 9MA10256.04

Managing Project Elements

Step Action

5 You can specify:
• An optional title.
• An optional description.

6 Click Ok to validate.

Editing a Subrange
To edit an existing Subrange, double-click it from the Project window tree.

To modify a value, select it in the table then:
• Enter a new value, or
• Click the browser button. A window appears to enter a new value.

To edit the properties of an existing Subrange, right-click it from the Project
window tree and select Edit properties to open the associated editor.

To directly modify the name of the Subrange, click it in the Project window tree
then click it again to open the name field. Enter the new name and press Enter to
validate.

To display the properties of an existing Subrange, right-click it from the Project
window tree and select View properties to open the associated Properties
Window.

Deleting a Subrange
To delete an existing Subrange, right-click it from the Project window tree and
select Delete.

Browse the Project

Overview

Description
Programming provides two tools to search for an object within a project: the
Object browser and the Find in project feature.

Project
1 WATER_TEMPERATURE

Name Type
INTProject

WATER_TEMPERATURE

Min
0

Max
100

Description
Temperature

9MA10256.04 133

Managing Project Elements

Object Browser

Description
Programming provides a tool for browsing the objects of your project: the Object
Browser.

This tool is context-dependent, this implies that the kind of selectable objects and
the available operations on objects depend on the context.

Object browser can be opened in the following ways:
• Browser mode:

In Programming, click the menu command Project > Object Browser.
• Import object mode:

Right-click the project name in the Project window and select Import
objects, the Object browser opens after opening the selected object.

• Select object mode:
For example, to add a program to a task, right-click a task item in the Project
window and select Add program command. It opens the Object browser
window.

User interaction with Object browser is similar for the three modes and is
presented in the next paragraph.

Common Features and Usage of Object Browser
This section presents the features and the usage of the Object browser.

Close Import objects

Object browser

Select all Select noneEnable merge method

Other filters

Vars group

Vars type All

Library

Location All

Name * OK

Objects filter

Check all Check none

Function Blocks

User types

Operators

Standard functions
Local variables

Programs

Functions
Variables

Name

AHUPlanModeStrategy
AHUTempCntrlStrategy
CompAlarmMgmt
CompAppLimit
CompCntrl_OnOff
CompCntrl_Slider

Type

CompCntrl_VS
CompMgmt
CompMgmtVS
COPCalculation
Counter2Energy
DoubleInterpo_5x8
EcFanMgmt
EnergyTrend
FanMgmt

Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks
Function blocks

Basic types

134 9MA10256.04

Managing Project Elements

Objects filter:

This is the main filter of the Object browser. You can select one of the available
(enabled) object items.

In this example, Programs, Function Blocks, Functions are selected, so objects
of this type are displayed in the object list. Variables and User types objects can
be selected, but objects of that type are not currently displayed in the object list.

You can also click the Check all button to select the available objects at one time
or can click the Check none button to deselect the objects at one time.

Other filters:

Selected objects can be also filtered by name, symbol location, specific library,
type of variable, and group of variables.

Filters are all additive and are immediately applied after setting.

Name

Function Filters objects on the base of their name.

Allowed values All the strings of characters.

Use Type a string to display the specific object whose name matches the
string. Use the * wildcard if you want to display all the objects whose
name contains the string in the Name text box. Type * if you want to
disable this filter.

Press Enter when edit box is focused or click the OK button to apply
the filter.

Applies to All object types.

Symbol location

Function Filters objects on the base of their location.

Allowed values All, Project, Target, Library, Aux. Sources.

Use All= Disables this filter.

Project= Objects declared in the Programming project.

Target= Firmware objects.

Library= Objects contained in a library. In this case, use
simultaneously also the Library filter.

Aux sources= Displays auxiliary sources only.

Applies to All objects types.

Objects filter

Check all Check none

Function Blocks
Programs

Functions
Variables
User types

Operators

Standard functions
Local variables
Basic types

Other filters

Vars group

Vars type All

Library

Location All

Name * OK

9MA10256.04 135

Managing Project Elements

Library

Function Filters objects contained in library. The value of this filter is relevant
only if the Symbol location filter is set to Library.

Allowed values All, libraryname1, libraryname2, ...

Use All= Displays objects contained in any library.

LibrarynameN= Displays only the objects contained in the library
named librarynameN.

Applies to All objects types.

Vars Type

Function Filters global variables and system variables (also known as firmware
variables) according to their type.

Allowed values All, Normal, Constant, Retain

Use All= Displays all the global and system variables.

Normal= Displays normal variables only.

Constant= Displays constants only.

Retain= Displays retain variables only.

Applies to Variables.

Vars Group

Function Filters variables according to their group.

Allowed values Analog_inputs, Anlog_Outputs, …

Use Displays the variables that belongs to the selected group.

Applies to Variables.

Object list:

Object list shows all the filtered objects. The list can be ordered in ascending or
descending order by clicking the header of the column. It is possible to order items
by Name, Type, or Description.

Double-clicking an item allows you to perform the default associated operation
(the action is the same as the OK, Import object, or Open source button
actions).

When item multiselection is allowed, Select all and Select none buttons are
visible.

It is possible to select all objects by clicking the Select all button. Select none
deselects all objects.

If at least one item is selected on the list operation, buttons are enabled.

Resize:

Object browser window can be resized, the cursor changes along the border of
the window and allows you to resize it. When reopened, Object browser window
keeps the same size and position of the previous usage.

Using Object Browser
In order to use the object browser to look over through the elements of the project,
choose the menu item Project > Object Browser.

Available objects:

In this mode, you can list objects of these types:
• Programs.

136 9MA10256.04

Managing Project Elements

• Function Blocks.
• Functions.
• Variables.
• User types.

These items can be checked or unchecked in the Objects filter section to show or
to hide the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic
types) cannot be browsed in this context, therefore they are unchecked and
disabled.

Available operations:

Open source, default operation for double-clicking an item

Function Opens the editor by which the selected object was created and
displays the relevant source code.

Use If the object is a program, or a function, or a function block, this button
opens the relevant source code editor.

If the object is a variable, then this button opens the variable editor.

Select the object whose editor you want to open, then click the Open
source button.

Export to library

Function Exports an object to a library.

Use Select the objects you want to export, then click the Export to library
button.

Delete objects

Function Allows you to delete an object.

Use Select the object you want to delete, then click the Delete object
button.

Using Object Browser for Import
Object browser is also used to support object importations in the project from an
external library.

In order to use the object browser to import external library to the project, choose
the menu item Project > Import objects.

Available objects:

In this mode you can list objects of these types:
• Programs.
• Function blocks.
• Functions.
• Variables.
• User types.

These items can be checked or unchecked in Objects filter section to show or to
hide the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic
types) cannot be imported so they are unchecked and disabled.

Available operations:

Import objects is the only operation supported in this mode. It is possible to
import selected objects by clicking the Import objects button or by double-clicking
one of the objects in the list.

9MA10256.04 137

Managing Project Elements

Using Object Browser for Object Selection
Object browser dialog is useful for many operations that require the selection of a
single PLC object. The Object browser can be used to select the program to add
to a task, to select the type of a variable, to select an item, to find in the project,
and so on.

Available objects:

Available objects are strictly dependent on the context. For example, in the
program assignment to a task operation, the only available objects are program
objects.

Not all available objects may be selected by default.

Available operations:

In this mode, it is possible to select a single object by double-clicking the list or by
clicking the OK button; then the dialog is automatically closed.

Search with the Find in Project Command

Description
The Find in project command retrieves all the instances of a specified character
string in the project.

In order to use this functionality, choose the menu item Edit > Find in project.

Programming displays the following dialog box:

Step Action

1 In the Find what box, type the name of the object you want to search.

Otherwise, click the Browse button on the right of the box, and select the name
of the object from the list of all the existing items.

2 Select one of the values listed in the Location box to specify a constraint on the
location of the objects to be monitored.

3 The frame named Object type filters contains 7 check boxes, each of which, if ticked,
enables research of the string among the object it refers to.

Find in project

Find what: Find & close

Find

Cancel

Location: All

...

Object type filters

Find options

Function blocks

Functions Macros Variables

Methods

Programs

Find in types

Find in description Match whole word only

Match case

Use Regular Expressions

User Types

138 9MA10256.04

Managing Project Elements

Step Action

4 Tick the relevant options check boxes in the Find options frame.

5 Click Find to start the search; otherwise click Cancel to quit.

The results are displayed in the Find in project tab of the Output window.

Project Custom Workspace

Overview

Description
The custom workspace functionalities allow you to organize your Project window
tree according to your needs, in order to obtain more efficiency in the
management of the project.

The organizational units of the custom workspace are logical having no effects on
the PLC code.

Output

Searching for ‘cnt’

Pulse(7)- ST cnt
Pulse(14)- LD cnt
Pulse(16)- ST cnt
Pulse(18)- LD cnt
Pulse(26)- ST cnt
Pulse(LV)- cnt : UINT

6 occurrence(s) have been found.

Build Find in project Debug Resources HMI Output

9MA10256.04 139

Managing Project Elements

Enable Custom Workspace Into an Existing Project

Description
To enable this feature, click the Use customizable workspace check box in
Project > Options... > General tab. Once enabled, the project needs to be
reloaded.

For more information, refer to Project Info, page 101.

By default this feature is enabled and customized according to the target device.

Workspaces Migration

Description
Whenever Custom Workspace feature is switched, Programming reorders the
workspace maintaining the user customization by this logic:

Static (old) workspace to custom (new)

Fixed logic units (for example function blocks folder) are converted into new
dynamic folders with the same names. Fixed global group units (for example:
Mapped variables) are converted into new global dynamic groups with the same
names. The global variables that do not belong to any group are grouped into a
new group called Ungrouped global vars.

Custom (new) workspace to static (old)

MyProject Project
Counters and timers

LadderLogic

Counters and timers params

PID
Function Blocks

LowPassFilter

PidControl

PidModeSelector

PID hmi

hmiPidTest
hmiPIDThreshold

PID params

Aux Variables
Tasks

Timed
PidControl

Boot
Init

Background

PidModeSelector

LadderLogic

Project

parCtDownPreset
parCtUpPreset
parPulseValue
parPulseWidth
parTimOnDelay
parTimOnValue

140 9MA10256.04

Managing Project Elements

The custom units are destroyed and the POUs and global variables are grouped
into the default fixed units (for example: function blocks folder and Mapped
Variables).

Custom Workspace Basic Units

Description
In the new custom workspace you can work using two different main logic units:

• Folder: this is an optional logical unit that can contain POUs, folders (you
can nest folders into another one), and global variables group.

• Global variables group: this is a mandatory logical unit that can only
contain global variables. In order to create a global variable, you need to have
almost one global variables group defined into your custom workspace.

Custom Workspace Operations

Description
Different operations can be performed in order to optimize the organization of your
project.

Creating a folder:

In order to create a folder select the root item of the project tree or, if you want to
nest it, an existing folder then right-click Add > New folder.

This operation adds a new customizable folder unit ready to be renamed. Default
folder name is New folder.

Creating a Global variables Group:

To create a global variables group, select the root item of the project tree or, if you
want to nest it, an existing folder, select it, then right-click and select Add > New
global variables group.

This operation adds a new customizable folder unit ready to be renamed. Default
folder name is New var group.

Rename a unit (folder or Global variables group:)

In order to rename a global variables group or a folder, select it, then right-click
and select Rename.

This operation makes the name of the unit ready to be renamed.

Deleting a unit (folder or Global variables group):

In order to delete a global variables group or a folder, select it, then right-click and
select Delete.

If the units contains any child, you are prompted for three possibilities:

Step Action

1 Delete all child elements too (this may impact the PLC).

2 Do not delete child elements, they are moved upwards following the project tree.

3 Cancel the operation and do nothing.

Export all children to library:

9MA10256.04 141

Managing Project Elements

To export all elements of a global variables group or a folder, select it, then right-
click and select Export all children to library.

This operation allows you to export recursively all child elements of the selected
item into a library. For more information about new library, refer to Exporting to a
Library, page 111.

Moving Unit:

You can simply drag units to a different location of the tree in order to organize
your project workspace. All children are moved if the parent item is moved,
following the original structure.

Moving variables is also possible both from project tree (single selection) and from
the variable grid (single and multiple selections). For more information about
variables editor, refer to Variables Editor, page 166.

Workspace Elements with Limitations

Description
Some elements of the workspace are fixed and not customizable. They are
automatically generated by Programming and no special custom operations are
allowed on:

• Root Project Element:
You cannot move, rename, or delete this element. It can contain customizable
units as children.

• POUs Children Elements:
These elements are generated following the structure of the POU they belong
to. You cannot move, rename, or delete these elements directly from the tree.
For more information about POUs, refer to Program Organization Units, page
115.

• SFC Children Elements:
These elements follow the previously mentioned rules but especially for the
SFC children nodes the rename or delete operations are not allowed also on
the POUs that belong to Actions or Transitions elements. For more
information about SFC language, refer to Sequential Function Chart (SFC)
Editor, page 161.

• Aux Variables Element:
You cannot move, rename, or delete this element and its children. They are
automatically generated by Programming.

• Tasks Element:
You cannot move, rename, or delete these elements. They are automatically
generated by Programming. For more information, refer to Tasks, page 125.

142 9MA10256.04

Managing Project Elements

Editing the Source Code
What’s in This Chapter

Overview .. 143
Instruction List (IL) Editor ... 143
Function Block Diagram (FBD) Editor.. 145
Ladder Diagram (LD) Editor ... 150
Structured Text (ST) Editor... 159
Sequential Function Chart (SFC) Editor .. 161
Variables Editor... 166

Overview

PLC Editors
Programming includes five source code editors, which support the whole range
of programming languages according to the IEC 61131-3 Standard:

• Instruction List (IL), page 143.
• Function Block Diagram (FBD), page 145.
• Ladder Diagram (LD), page 150.
• Structured Text (ST), page 159.
• Sequential Function Chart (SFC), page 161.

The editors, both graphical and text one, support tooltips. By enabling them, page
39, Programming shows some information about symbols on mouse-over.

Instruction List (IL) Editor

Overview

Description
The IL editor allows you to write code and modify POUs using Instruction List (IL):

Editing Functions

Description
The IL editor is endowed with functions common to most editors running on a
Windows platform, namely:

• Text selection.

• Edit > Cut

9MA10256.04 143

Editing the Source Code

• Edit > Copy

• Edit > Paste
• Edit > Replace
• Drag-and-drop of selected text.

Reference to PLC Objects

Description
If you need to add a reference to an existing PLC object, you have two options:

• You can type directly the name of the PLC object.
• You can drag it to a suitable location. For example, global variables can be

taken from the Workspace window, whereas standard operators and
embedded functions can be dragged from the Libraries window, whereas
local variables can be selected from the local variables editor.

Automatic Error Location

Description
The IL editor also automatically displays the location of compiler errors. To know
where a compiler error occurred, double-click the corresponding error line in the
Output bar.

Bookmarks

Description
You can set bookmarks to mark frequently accessed lines in your source file. You
can remove a bookmark when you no longer need it.

Setting a Bookmark
Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2.

The line is marked in the margin by a light-blue circle.

Bookmarks are managed in Edit > Bookmarks…. The available commands are:
• Add/toogle (Ctrl+F2)
• Next (F2)
• Prev (Shift+F2)
• Remove all

144 9MA10256.04

Editing the Source Code

Jumping to Next Bookmark
Press F2 repeatedly until you reach the desired line.

Jumping to Previous Bookmark
Press Shift+F2 repeatedly until you reach the desired line.

Removing a Bookmark
Move the cursor to anywhere on the line containing the bookmark, then press Ctrl
+F2.

Function Block Diagram (FBD) Editor

Overview

Description
The FBD editor allows you to code and modify POUs using Function Block Diagram (FBD):

For more details, refer to Function Block Diagram language reference, page 274.

Creating a New FBD Document

Description
For creation and modification of FBD documents, refer to:

• Creating a Program Organization Unit, page 115.
• Creating a Function Block/Function, page 115.
• Editing POUs, page 116.

9MA10256.04 145

Editing the Source Code

Adding/Removing Networks

Description
Every POU coded in FBD consists of a sequence of networks. A network is
defined as a maximal set of interconnected graphic elements. The upper and
lower bounds of every network are fixed by two straight lines while each network is
delimited on the left by a gray area containing the network number:

You can perform the following operations on networks:
• To add a new blank network, click Scheme > Network > New and select the

position of the new network: Top, Bottom, Before, or After.
• To delete a network, select it and press Delete.
• To display a background grid which helps you to align objects, click View >

Grid .
• To add a comment, click Scheme > Object > New > Comment.

Labeling Networks

Description
You can modify the usual order of execution of networks through a jump
statement, which transfers the program control to a labeled network.

To assign a label to a network:

Step Action

1 Select the network.

2 Apply one of the following operations:
• Click Scheme > Network > Label.
• Double-click the gray area containing the network number.

146 9MA10256.04

Editing the Source Code

Step Action

3
A dialog box appears, which lets you enter the label you want to associate with the selected
network:

4 Click OK.

The label is displayed in the top left-hand corner of the selected network.

Inserting and Connecting Blocks

Overview
This paragraph presents how to build a network.

Inserting Blocks
Add a block to the blank network, by applying one of the following operations:

• Open the Object browser window, by applying one of the following
operations:
◦ In the menu, click Scheme > Object > New > Function Block.

◦ In the FBD toolbar, click .
If the block is a constant, a return statement, or a jump statement, you can
directly click the relevant buttons in the FBD toolbar, page 97

Then choose one item from the list and click OK.
• Drag the selected object from the suitable location. For example, global

variables can be taken from the Workspace window, whereas standard
operators and embedded functions can be dragged from the Libraries
window, whereas local variables can be selected from the local variables
editor.

Repeat until you have added all the blocks to the network.

Connecting Blocks
To connect blocks manually:

OK Cancel

Label_X
New network label

Network label 0005

0006

9MA10256.04 147

Editing the Source Code

• Enable the manual connection mode by applying one of the following
operations:

◦ In the menu, click Edit > Connection mode.

◦ In the FBD toolbar, click .
◦ Press Space key.

• Click once the source pin, then move the mouse pointer to the destination pin:
the FBD editor draws a logical wire from the former to the latter.

To connect blocks automatically:
• Enable the automatic connection mode by applying one of the following

operations:

◦ In the menu, click Scheme > Auto connect.

◦ In the code editor, right-click and click Auto connect.
• Then select one block, drag it close to the other one to let the corresponding

pins coincide. The FBD editor automatically draws the logical wires.

Deleting Blocks
To delete a block, select it and press Delete key.

When you delete a block, its connections are not removed automatically, but they
become invalid and they are redrawn red. Click Scheme > Delete invalid
connection.

148 9MA10256.04

Editing the Source Code

Editing Networks

Description
The FBD editor is endowed with functions common to most graphic applications
running on a Windows platform, namely:

• Selection of a block.
• Selection of a set of blocks by pressing Shift+Left button and by drawing a

frame including the blocks to select.

• Edit > Cut , Edit > Copy , Edit > Paste operations of a single
block as well as of a set of blocks.

• Drag-and-drop.

Modifying Properties of Blocks

Description

• Click Scheme > Increment pins to increment the number of input pins
of some operators and embedded functions.

• Click Scheme > Enable EN/ENO pins to display the enable input and
output pins.

• Click Scheme > Object > Instance name or click Scheme > Object
properties to modify the name of an instance of a function block.

For more information, refer to Modifying Properties of Blocks, page 155 in Ladder
Diagram (LD) Editor section.

Getting Information on a Block

Description
You can always get information on a block by selecting it and then applying one of
the following operations:

• Click Scheme > Object > Open source to open the source code of a
block.

• Click Scheme > Object properties to see properties and input/output pins of
the selected block.

Automatic Error Retrieval

Description
The FBD editor also automatically displays the location of compiler errors. To
reach the block where a compiler error occurred, double-click the corresponding
error line in the Output bar.

9MA10256.04 149

Editing the Source Code

Ladder Diagram (LD) Editor

Overview

Description
The LD editor allows you to code and modify POUs using Ladder Diagram (LD):

For more details, refer to Ladder Diagram language reference, page 278.

Creating a New LD Document

Description
For creation and modification of FBD documents, refer to:

• Creating a Program Organization Unit, page 115.
• Creating a Function Block/Function, page 115.
• Editing POUs, page 116.

Adding/Removing Networks

Description
Each POU coded in LD consists of a sequence of networks. A network is defined
as the set of interconnected graphic elements. The upper and lower bounds of
every network are fixed by two straight lines while each network is delimited on the
left by a gray area containing the network number.

On each LD network, the right and the left power rail are represented, according to
the LD language indication.

On the new LD network, a horizontal line links the two power rails. It is called the
“power link”. On this link, all the LD elements (contacts, coils, and blocks) of the
network are placed.

150 9MA10256.04

Editing the Source Code

You can perform the following operations on networks:
• To add a new blank network, click Scheme > Network > New, or click one of

the equivalent buttons in the Network toolbar.
• To display a background grid which helps you to align objects, click View >

Grid .

• To add a comment, click Scheme > Object > New Comment or press
Shift+M.

Labeling Networks

Description
You can modify the usual order of execution of networks through a jump
statement, which transfers the program control to a labeled network.

To assign a label to a network:

Step Action

1 Select the network.

2 Apply one of the following operations:
• Click Scheme > Network > Label.
• Double-click the gray area containing the network number.

3
A dialog box appears, which lets you enter the label you want to associate with the selected
network:

4 Click OK.

The label is displayed in the top left-hand corner of the selected network:

Inserting Contacts

Description
To insert new contacts on the network, apply one of the following procedures:

• Drag a boolean variable to the desired place over an object. For example,
global variables can be taken from the Workspace window, whereas local
variables can be selected from the local variables editor. Contacts inserted
with drag and drop will always be inserted in series after the destination
object.

OK Cancel

Label_X
New network label

Network label 0001

0002

()
? ?

9MA10256.04 151

Editing the Source Code

• Select a contact, a block, a pin of block, or a connection point that acts as the
insertion point. Insert the new contact choosing between the connection type
(serial or parallel) and choosing the position (before or after the currently
selected object) by using the Scheme > Object > New.

For serial insertion, the new contact is inserted on the left or right side of the
selected contact/block or in the middle of the selected connection depending on
the element selected before the insertion. Examples of serial insertion:

For parallel insertions, several contacts can be selected before performing the
insertion; the new contact is inserted above or below the group of selected
contacts. Examples of parallel insertions

152 9MA10256.04

Editing the Source Code

Inserting Coils

Description
To insert new coils on the network, apply one of the following operations:

• Drag a boolean variable on the network, over an existing output of the
network (coil, return, jump). For example, global variables can be taken from
the Workspace window, whereas local variables can be selected from the
local variables editor.

• Click Scheme > Object > New > Coil.
The new coil is inserted to the right power rail. If other coils, return or jumps
are already present in the network, the new coil is added in parallel with the
previous ones.

9MA10256.04 153

Editing the Source Code

Inserting Blocks

Description
To insert blocks on the network, apply one of the following operations:

• Select a contact, connection, or block then click Scheme > Object >
New > Block, then the Browser object window appears. Choose one item
from the list.

• Drag the selected object (from the Workspace window, the Libraries window
or the local variables editor) over the desired connection.

If the object has at least one BOOL input and one BOOL output pins, they are
connected to the power link (and it will possible to add EN/ENO pins later with the
provided command); otherwise the EN/ENO pins are automatically added.

Operators, functions, and function blocks can only be inserted into an LD network
on the main power link, or on the power link of a branch (so they cannot be
inserted in parallel of a contact); it is also not possible to create a contact in
parallel of a block.

If a block has a BOOL input pin, it is possible to create another logical sub-
network of contacts and blocks before it; otherwise, you can connect only
variables, constants, or expressions (that nevertheless can be connected to
BOOL pins) to non-BOOL input pins.

Editing Coils and Contacts Properties

Description
The type of a contact (normal, negated, positive, negative) or a coil (normal,
negated, set, reset, positive, negative) can be changed by one of the following
operations:

• Double-click the element (contact or coil).
• Select the element and then press the Enter key.
• Select the element, activate the pop-up menu, then select Properties.

A relevant dialog box appears. Select the desired element type from the list
displayed and then click OK.

Otherwise, select the desired contact or coil, and modify its type using the six
provided buttons in the LD toolbar or the six commands in the Scheme menu.

Contact Coil
Normal
Negate

Negative

Reset

OK Cancel

LD object properties

...Name

Set

Positive

Negate

Negative

Normal

Positive

154 9MA10256.04

Editing the Source Code

Editing Networks

Description
The LD editor is endowed with functions common to most graphic applications
running on a Windows platform, namely:

• Selection of a block.
• Selection of a set of adjacent contacts by pressing Ctrl+Left button on each

contact to select; if the selection spans across different parallel branches,
more contacts are automatically added in the selection.

• Edit > Cut , Edit > Copy , Edit > Paste operations of a single
block as well as of a set of blocks.

• Drag-and-drop of the selected object or group to move it inside or outside
the current network.

Adding, moving, deleting, or copy/pasting objects will automatically recalculate the
layout of the network objects; because of this, it is not possible to manually “draw”
connection lines or freely placing objects without connecting them to the network.

Modifying Properties of Blocks

Description

• Click Scheme > Increment pins to increment the number of input pins
of some operators and embedded functions.

NOTE: You can also remove pins by clicking Decrease pins .

• Click Scheme > Enable EN/ENO pins to display the enable input and
output pins.
EN/ENO pins can be removed only if the selected block has at least one
BOOL input and one BOOL output; otherwise, they are automatically added
when creating the block and it will not be possible to remove them (the
Enable EN/ENO pins command is disabled).
If a block has more than one BOOL output pin, it is possible to choose which
pin brings the signal out of the block and so continue the power link: select

the desired output pin and click the Scheme > Set output line menu
command.

9MA10256.04 155

Editing the Source Code

• Click Scheme > Object properties to modify the name of an instance of a
function block.

Getting Information on a Block

Description
You can always get information on a block that you added to an LD document, by
selecting it and then applying one of the following operations:

• Click Scheme > Object > Open source to open the source code of a
block.

• Click Scheme > View PLC Object properties in the menu to see properties
and input/output pins of the selected block.

Automatic Error Retrieval

Description
The LD editor also automatically displays the location of compiler errors. To reach
the block where a compiler error occurred, double-click the corresponding error
line in the Output bar.

Inserting Variables

Description
To connect a variable to an input or output pin of a block, apply one of the
following procedures:

• Select the pin of a block, and then click the Scheme > Object > New >
Variable menu command; then double-click the new variable object (or
press Enter key) and enter the variable name.

• Drag the selected variable (from the Workspace window, the Libraries
window or the local variables editor) over the desired pin of a block.

FBD object properties

Instance name

OK Cancel

TON_1 En/Eno

IN
Name Type Description

PT
Q
ET

BOOL
UDINT
BOOL
UDINT

Preset time value [ms]
Timer input source

Timer output
Timer current value [ms]

I/O Neg
In
In
Out
Out

n/a

n/a

Function blocks

156 9MA10256.04

Editing the Source Code

Inserting Constants

Description
To connect a numeric constant to an input pin of block, select the pin and click the

Scheme > Object > New > Constant menu command; then double-click the
new constant object (or press Enter key) and enter the numeric constant value.

Inserting Expression

Description
To connect a complex expression to an input pin of block, select the pin and click

the Scheme > Object > New > Expression menu command; then double-
click the new expression object (or press Enter key) and enter any ST expression.

For example:
(a+b)*c
TO_INT(n)
ADR(x)

Comments

Description
It is possible to insert two types of comments:

• Network comments: activate the network by clicking the header on the left or

inside the grid (but without selecting any object), and then click the
Scheme > Object > New > Comment menu command. The network
comment is displayed at the top of the network, and if necessary is expanded
to show all the text lines of the comment.

• Object comments: they are activated with the menu command in View >
Show comments for objects. Above any contact, function block, or coil, the
description of the associated PLC variable (if present) is initially displayed.
With the Comment command, you can modify it to enter a specific object
comment that overrides the PLC variable description.

9MA10256.04 157

Editing the Source Code

Branches

Description
The main power line can be branched to create sub-networks that can be further
branched themselves. To add a branch, select the object after you want to create
the branch and then click the Scheme > Object > New > Branch menu
command.

The start of the new branch is marked as a large dot on the source line; deleting
the objects on a branch deletes the branch itself.

Selecting an object on a branch effectively selects the branch, so for example

selecting a contact on a branch and then clicking the Scheme > Object >
New > Coil adds the coil on the branch instead of adding it on the main power
line.

158 9MA10256.04

Editing the Source Code

Structured Text (ST) Editor

Overview

Description
The ST editor allows you to code and modify POUs using Structured Text (ST):

For more details, refer to Structured Text language reference, page 280.

Creating and Editing ST Objects

Description
For creation and modification of FBD documents, refer to:

• Creating a Program Organization Unit, page 115.
• Creating a Function Block/Function, page 115.
• Editing POUs, page 116.

Editing Functions

Description
The ST editor is endowed with functions common to most editors running on a
Windows platform, namely:

• Text selection.

• Edit > Cut .

• Edit > Copy .

• Edit > Paste .
• Edit > Replace.
• Drag-and-drop of selected text.

9MA10256.04 159

Editing the Source Code

Reference to PLC Objects

Description
If you need to add to your ST code a reference to an existing PLC object, you have
two options:

• You can type directly the name of the PLC object.
• You can drag it to a suitable location. For example, global variables can be

taken from the Workspace window, whereas embedded functions can be
dragged from the Libraries window, whereas local variables can be selected
from the local variables editor.

Automatic Error Location

Description
The ST editor also automatically displays the location of compiler errors. To know
where a compiler error has occurred, double-click the corresponding error line in
the Output bar.

Bookmarks

Description
You can set bookmarks to mark frequently accessed lines in your source file.
Once a bookmark is set, you can use a keyboard command to move to it. You can
remove a bookmark when you no longer need it.

Setting a Bookmark
Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2.

The line is marked in the margin by a light-blue circle:

Bookmarks are managed in Edit > Bookmarks…. The available commands are:
• Add/toogle (Ctrl+F2)
• Next (F2)
• Prev (Shift+F2)
• Remove all

Jumping to Next Bookmark
Press F2 repeatedly until you reach the desired line.

Jumping to Previous Bookmark
Press Shift+F2 repeatedly until you reach the desired line.

160 9MA10256.04

Editing the Source Code

Removing a Bookmark
Move the cursor to anywhere on the line containing the bookmark, then press Ctrl
+F2.

Sequential Function Chart (SFC) Editor

Overview

Description
The SFC editor allows you to code and modify POUs using Sequential Function
Chart (SFC):

For more information about SFC editor features, refer to SFC Toolbar, page 98.

For more details, refer to Sequential Function Chart language reference, page
289.

Creating a New SFC Document

Description
For creation and modification of FBD documents, refer to:

• Creating a Program Organization Unit, page 115.
• Creating a Function Block/Function, page 115.
• Editing POUs, page 116.

Inserting a New SFC Element

Description
You can insert three type of SFC elements:

• Click Scheme > Object > New > Step.

• Click Scheme > Object > New > Transition.

• Click Scheme > Object > New > Jump.
In either case, the mouse pointer changes to:

for steps;

for transitions;

for jumps.

9MA10256.04 161

Editing the Source Code

Connecting SFC Elements

Description
Follow this procedure to connect SFC blocks:

• Click Edit > Connection mode, or simply press the space bar on your
keyboard. Click once the source pin, then move the mouse pointer to the
destination pin: the SFC editor draws a logical wire from the former to the
latter.

• Alternatively, you can enable the auto connection mode by clicking
Scheme > Auto connect. Then take the two blocks, and drag them close to
each other to let the respective pins coincide, which makes the SFC editor
draw automatically the logical wire.

Assigning an Action to a Step

Description
This paragraph explains how to implement an action and how to assign it to a
step.

Writing the Code of an Action
Start by opening an editor, applying one of the following procedures:

• Click Scheme > Code object > New action.

• Right-click on the name of the SFC POU in the Workspace window
New action.

In either case, Programming displays a dialog box:

Select one of the languages and type the name of the new action in the text box at
the bottom of the dialog box. Then either confirm by clicking OK, or quit by clicking
Cancel.

If you click OK, Programming opens automatically the editor associated with the
language you selected in the previous dialog box and you are ready to type the
code of the new action.

You are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local
variables can be declared. The scope of local variables extends to all the actions
and transitions making up the SFC diagram.

SFC code type

Name

Languages

FBD

IL

SFC

LD

ST

OK

Cancel

162 9MA10256.04

Editing the Source Code

Assigning an Action to a Step
When you have finished writing the code, double-click the step you want to assign
the new action to. This causes the following dialog box to appear.

From the list displayed in the Code N box, select the name of the action you want
to execute if the step is active. You may also choose, from the list displayed in the
Code P (Pulse) box, the name of the action you want to execute each time the
step becomes active (that is, the action is executed only once per step activation,
regardless of the number of cycles the step remains active). Confirm the
assignments by clicking OK.

In the SFC schema, actions to step assignments are represented by letters on the
step block:

• Action N by letter N;
• Action P by letter P.

If later you need to edit the source code of the action, you can double-click these
letters. Alternatively, you can double-click the name of the action in the Actions
folder of the Workspace window.

Specifying a Conditional Transition

Description
A transition condition can be assigned through a constant, a variable, or a piece of
code. This paragraph explains how to use the first two means while conditional
code is discussed in the next paragraph.

SFC Action Properties

OK

CancelManualMode

Code P [No code]

Tes

[No code]
AnalogInputMode
AutoModeInit
Idle

Setpoint10Negative
Setpoint10Positive
Test_2
TestModeInit

ManualMode

Code N

Name

Comment

end_Manual

Init

Test_2
Setpoint10Negative

9MA10256.04 163

Editing the Source Code

First of all, double-click the transition you want to assign a condition to. This
causes the following dialog box to appear:

Select True if you want this transition to be constantly cleared, False if you want
the PLC program to keep executing the preceding block.

Instead, if you select Variable the transition depends on the value of a boolean
variable. Click the corresponding bullet to make the text box to its right available,
and to specify the name of the variable.

You can also make use of the objects browser, that you can invoke by clicking the

Browse button.

Click OK to confirm, or Cancel to quit without applying changes.

Assigning Conditional Code to a Transition

Description
This paragraph explains how to specify a condition through a piece of code, and
how to assign it to a transition.

Writing the Code of a Condition
Start by opening an editor, applying one of the following procedures:

• Click Scheme > Code object > New transition code.

• Right-click on the name of the SFC POU in the Workspace window New
transition.

In either case, Programming displays a dialog box:

Value

SFC Transition Properties

False

Expression

Code

Variable

True

[No code]

Visible

...hmiPidTest

OK

Cancel

SFC code type

Name

Languages

FBD

IL

LD

OK

Cancel

ST

164 9MA10256.04

Editing the Source Code

Select one of the languages and type the name of the new condition in the text
box at the bottom of the dialog box. Then either confirm by clicking OK, or quit by
clicking Cancel.

If you click the OK button, Programming opens automatically the editor
associated with the language you selected in the previous dialog box and you can
type the code of the new condition.

You are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local
variables can be declared. The scope of local variables extends to all the actions
and transitions making up the SFC diagram.

Assigning a Condition to a Transition
When you have finished writing the code, double-click the transition you want to
assign the new condition to. This causes the following dialog box to appear:

Select the name of the condition you want to assign to this step. Then confirm by
clicking OK.

If later you need to edit the source code of the condition, you can double-click the
name of the transition in the Transitions folder of the Workspace window.

Specifying the Destination of a Jump

Description
To specify the destination step of a jump, double-click the jump block in the Chart
area. This opens the dialog box presented below, listing the name of all the
existing steps. Select the destination step, then either click OK to confirm or
Cancel to quit.

end_AutoPhase

testPhase1end_A

Value

SFC Transition Properties

False

Expression

Code

Variable

True

end_AutoPhase0

Visible

...

OK

Cancel

[No code]
end_Analog
end_Automatic
end_AutoPhase0
end_AutoPhase1

end_TestPhase0
end_TestPhase1
end_TestPhase2

end_Manual

end_AutoPhase1

Auto_Phase_0 Init

inpAutomaticpoint

Auto_Phase _0
AutoModeInit

Setpoint10Positive

Auto_Phase _1
Setpoint10Positive

Analog_setpoint
Auto_Phase_0
Auto_Phase_1
Init
Manual_setpoint
Test_Phase_0
Test_Phase_1
Test_Phase_2

OK

Cancel

SFC Jump properties

9MA10256.04 165

Editing the Source Code

Editing SFC Networks

Description
The SFC editor is endowed with functions common to most graphic applications
running on a Windows platform, namely:

• Selection of a block.
• Selection of a set of blocks by pressing Ctrl + left button.

• Edit > Cut , Edit > Copy , Edit > Paste operations of a single
block as well as of a set of blocks.

• Drag-and-drop.

Variables Editor

Overview

Description
Programming includes a graphical editor for both global and local variables that
supplies an interface for declaring and editing variables: the tool takes care of
translating the contents of these editors into syntactically correct IEC 61131-3
source code.

As an example, consider the contents of the Global variables editor represented in
the following figure:

The corresponding source code is represented like this:
VAR_GLOBAL

gA : BOOL := TRUE;
gB : ARRAY[0..4] OF REAL;
gC AT %MD60.20 : REAL := 1.0;

END_VAR
VAR_GLOBAL CONSTANT

gD : INT := -74;
END_VAR

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Name Type Address
No
[0...4]
No
No

Array
TRUE

1.0
-74

Init value Attribute

CONSTANT

166 9MA10256.04

Editing the Source Code

Opening a Variables Editor

Opening the Global Variables Editor
To open the Global variables editor, double-click Global variables in the project
tree:

NOTE: If you use the customizable workspace, page 101, the global variables

are accessible under the icon Global variables group.

Opening a Local Variables Editor
To open a local variables editor, double-click the Program Organization Unit that
contains the local variables you want to edit:

NOTE: If you use the customizable workspace, page 101, the local variables
are accessible under the POU, in the Local variables group.

Creating a New Variable

Description
Create a new variable, by applying one of the following operations:

• In the menu, click Variables > Insert.

• In the Project toolbar, click .
• Press the Ctrl+Shift+Insert keys.

Editing Variables

Description
Follow this procedure to edit the declaration of a variable in a variables editor (the
following steps are optional and you will skip most of them when editing a
variable):

MyProject Project

Project

Programs
Function blocks
Functions

Automatic variables
Mapped variables
Constants
Retain variables

Global variables

Name Type Address
1
2
3
4
5
6
7
8

parCtDownPreset
parCtUpPreset
parPulseValue
parPulseWidth
parTimOnDelay
parTimOnValue
pidKD
pidKI

UDINT
UDINT
UDINT
UDINT
UDINT
UDINT
REAL
REAL

Auto
Auto
Auto
Auto
Auto
Auto
Auto
%MD1

MyProject Project

Project

Programs
LadderLogic
PidControl
PidModeSelector
Temperature_Control

Function blocks

Name Type Address
1
2
3
4
5

fbDelay
fbCtu
fbCtd
fbTp
ettp

TON
CTU_DINT
CTU_DINT
TP
UDINT

Auto
Auto
Auto
Auto
Auto

Local variables

9MA10256.04 167

Editing the Source Code

Step Action

1
Edit the name of the variable by entering the new name in the corresponding cell:

2
Modify the variable type, either by editing the type name in the corresponding cell or by
clicking the button in that cell and select the desired type from the list that pops up:

3
Edit the address of the variable by clicking the button in the corresponding cell and
entering the required information in the window that shows up. In the case of global
variables, this operation may change the position of the variable in the project tree:

4
In the case of global variables, you can assign the variable to a group, by selecting it
from the list which opens when you click the corresponding cell. This operation changes
the position of the variable in the project tree:

5
Choose whether a variable is an array or not. If it is, edit the size of the variable:

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group
No
[0...4]
No
No

Array

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group

Variable address

Size
Bit

OK

Cancel

Automatic address

Double word (32 bit)
Word (16 bit)
Byte (8 bit)

Location

Output

Input

Memory

Data block Index
60 20.

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group
No
[0...4]
No
No

Array
Ungrouped_vars

Ungrouped_vars
MyMapped_vars
MyConstants_vars

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group
No
[0...4]
No
No

Array
TRUE

1.0
-74

Init value

168 9MA10256.04

Editing the Source Code

Step Action

6
Edit the initial values of the variable: click the button in the corresponding cell and enter
the values in the window that pops up:

7
Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it
from the list which opens when you click the corresponding cell:

8
Type a description for the variable in the corresponding cell. In the case of global
variables, this operation may modify the position of the variable in the project tree:

9 Save the project to persist the changes you made to the declaration of the variable.

Deleting Variables

Description
In order to delete one or more variables, select them in the editor. You can use the
Ctrl or the Shift keys to select multiple elements:

Delete selected variable(s), by applying one of the following operations:
• In the menu, click Variables > Delete.

Size of variable

Scalar

OK Cancel

Array / Matrix

5Dimensions

Init values for: gB (REAL)

OK Cancel

[0,1,2,1,0]

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group
No
[0...4]
No
No

Array
TRUE

1.0
-74

Init value

CONSTANT

Attribute

[0,1,2,1,0]

CONSTANT
RETAIN

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

Name Type Address Group
No
[0...4]
No
No

Array
TRUE

1.0
-74

Init value

CONSTANT

Attribute

[0,1,2,1,0]

Description

--- Global variable C

Global variable D

Global variable B
Global variable A---

G_I_iTe INT
INT
INT
BOOL

Auto
Auto

Auto
Auto

1
2
3
4

Ungrouped_vars
Ungrouped_vars
Ungrouped_vars
Ungrouped_vars

Name Type Address Group
No
No
No
No

Array

1

Init value

gA
gB
gC
gD

BOOL
REAL
REAL
INT

Auto
Auto

%MD60.20
Auto

6
7
8
9

Ungrouped_vars
Ungrouped_vars
MyMapped_vars
MyConstants_vars

No
[0...4]
No
No

TRUE

1.0
-74

[0,1,2,1,0]

BOOL Auto5 Ungrouped_vars No

G_I_iSe
G_I_iDi
G_I_iC
G_I_iAI

9MA10256.04 169

Editing the Source Code

• In the Project toolbar, click .
• Press the Delete key.

You cannot delete the RESULT of an IEC 61131-3 FUNCTION.

Sorting Variables

Description
You can sort the variables in the editor by clicking the column header of the field
you want to use as the sorting criterion.

Copying Variables

Description
The variables editor allows you to copy and paste elements. You can either use

keyboard shortcuts or the Edit > Copy , Edit > Paste menu.
NOTE: Overlapping addresses problems may occur by copying mapped
variables. Programming can automatically assign available address to the
pasted variable and fix the overlap. In order to enable this functionality, refer to
Software Options, page 39 and Merge Function, page 112 for further details.

Creating an Error Variable

Description
Error variables are implemented only in the FREE Optima controllers.

Create an error variable by choosing from the error messages available:

sysErrMsg Error ID Error Message Blink Mode

sysErrMsg0 -1000 OUT OF RANGE (1) 0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

sysErrMsg1 -32768 PROBE ERROR (1) 0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

sysErrMsg2 -32767 REMOTE PROBE
ERROR (1)

0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

sysErrMsg3 -32766 PROBE CONFIG
ERROR (1)

0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

sysErrMsg4 -32765 AI PAIRS ERROR (1) 0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

sysErrMsg5 -32764 - (2) 0 = Blink OFF (3)

1 = Blink ON

170 9MA10256.04

Editing the Source Code

sysErrMsg Error ID Error Message Blink Mode

2 = Blink Fast

sysErrMsg6 -32763 - (2) 0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

sysErrMsg7 -32762 - (2) 0 = Blink OFF (3)

1 = Blink ON

2 = Blink Fast

(1) Editable default message (max 20 characters). The meaning of the error does not change but
the text message displayed can be changed.

(2) Default empty string, to be modified with the error you want to display (max 20 characters)

(3) Default Blink Mode

The Error Message is displayed when the variable to be shown has a value equal
to the Error ID.

NOTICE
Do not modify the Error ID value. Error ID represents the value associated with
the sysErrMsg.

Failure to follow these instructions can result in equipment damage.

Library tree

Project libraries

Operators and blocks

Target

Target blocks

Target definitions

Target variables

Analog_Inputs
Analog_Outputs
Digital_Inputs
Digital_Outputs
Display

isEditWhiticon

sysKeyFunctions

sysCurrentMenuID

sysGo ToMenuID
sysIcons
sysKeyboard

sysLogicalKeys

sysErrMsg0
sysErrMsg1
sysErrMsg2
sysErrMsg3
sysErrMsg4
sysErrMsg5
sysErrMsg6
sysErrMsg7

Watch

Symbol Value Type Location

sysErrMsg0

i1

i2

ErrorID

ErrorMsg

BlinkMode

-

-32768

0

-1000

‘OUT OF RANGE’

0

sysErrMsg1

ErrorID

ErrorMsg

BlinkMode

-

-32768

‘PROBE ERROR’

0

sysErrMsg2

ErrorID

ErrorMsg

BlinkMode

-

-32767

‘REMOTE PROBE ERROR’

0

sysErrMsg3

ErrorID

ErrorMsg

BlinkMode

-

-32766

‘PROBE CONFIG ERROR’

0

sysErrMsg4

ErrorID

ErrorMsg

-

-32765

‘AI PAIRS ERROR’

TypeErrMsg

INT

INT

global

global

DINT

STRING

DINT

TypeErrMsg

DINT

STRING

DINT

TypeErrMsg

DINT

STRING

DINT

TypeErrMsg

DINT

STRING

DINT

TypeErrMsg

DINT

STRING

To insert a new error message:
• In the Library Tree click Target > Target Variables > Display and choose the

appropriate sysErrMsg.
• Load sysErrMsg on the Watch Window (Refer to Watch Window, page 194 for

details) and modify, if necessary, the description of the error you want to
display with double-click on the ErrorMsg in the Value column.

• Modify the parameter with the value of the Error ID associated with the
chosen sysErrMsg.

9MA10256.04 171

Editing the Source Code

Compiling
What’s in This Chapter

Overview .. 172
Compiling the Project... 172
Compiler Output .. 173
Command-Line Compiler ... 175

Overview

Description
Compilation consists of transforming the PLC source code into another
programming language (the target language) such as binary code, which can be
executed by the processor on the target device.

Compiling the Project

Overview

Prerequisite
Before starting the compilation, make sure that at least one program has been
assigned to a task:

Otherwise, compilation aborts with a meaningful error message:

Compiling the Project
Start compiling the project, by applying one of the following operations:

• In the menu, click Project > Compile.

• In the Project toolbar, click .
• Press the F7 key.

NOTE: Programming automatically saves the changes to the project before
starting the compilation.

Tasks
Timed

Boot
Init

MyMain
Background

Output

error P2068: No task defined for the application

0 warnings, 1 errors.

Build Find in project Debug Resources HMI Output

172 9MA10256.04

Compiling

Image File Loading

Description
Before performing the compilation, the compiler needs to load the image file (*.
img file), which contains the memory map of the target device. If the target is
connected when compilation is started, the compiler seeks the image file directly
on the target. Otherwise, it loads the local copy of the image file from the working
folder. If the target device is disconnected and there is no local copy of the image
file, compilation cannot be carried out: you are then required to connect to a
working target device.

Compiler Output

Overview

Description
As the previous step is accomplished, the compiler performs the compilation, then
displays a report in the Output window. The last string of the report has the
following format:
m warnings, n errors

Condition Description

n>0 Compiler error(s). The PLC code contains one or more serious detected errors,
which require intervention. No executable code was generated.

n=0, m>0 Emission of warning(s). The PLC code contains one or more minor detected
errors, which the compiler automatically worked around. However, you are
informed that the PLC program may act differently from what you intend.

You should correct these minor errors by editing and recompiling the application
until no other messages are reported.

n=m=0 The compilation was successful in that no errors or warnings were detected.

Output

PlcExample.img – error I0001:
Invalid memory image file.
Please upload memory image from the target

Build Find in project Debug Resources HMI Output

9MA10256.04 173

Compiling

Compiler Errors

Description
When your application contains one or more errors, information is displayed in the
Output window for each of those detected errors.

For each detected error, the information includes:
• The name of the Program Organization Unit affected by the error;
• The number of the source code line which procured the error;
• The type of error:
◦ error: serious error
◦ warning: minor error

• The error code;
• The error description.

For more information, refer to Compile Time Error Messages, page 301.

Output

Preprocessing Global shared completed.

0 warnings, 0 errors.

Preprocessing user defined data .. completed.
Compiling programs .. completed.
Compiling function blocks .. completed.
Compiling functions .. completed.
Preprocessing user defined data .. completed.

Code generation ..
Preprocessing EmbeddedElements completed.
aborted.
MAIN(1) – error A4097: N1 => Object not found

0 warnings, 1 errors.

Build Find in project Debug Resources HMI Output

174 9MA10256.04

Compiling

If you double-click the error message in the Output window, Programming opens
the source code and highlights the line containing the detected error:

Command-Line Compiler

Description
The compiler can be used independently from the integrated software
environment: in the directory of FREE Studio Plus, you can find an executable file,
EWc.exe, which can be invoked (for example, in a batch file) with a number of
options.

In order to get information about the syntax and the options of this command-line
tool, launch the executable without parameters.

Output

Preprocessing user defined data .. completed.
Compiling programs .. completed.
Compiling function blocks .. completed.
Compiling functions .. completed.
Preprocessing user defined data .. completed.

Code generation ..
Preprocessing EmbeddedElements completed.
aborted.
MYMAIN(2) – error A4097: CNT2 => Object not found

0 warnings, 1 errors.

Build Find in project Debug Resources HMI Output

Local variables Project

0001
0002
0003

cnt := cnt2 + 1;

MyMain

Project

MyMain
Ungrouped_vars
Aux Variables
Tasks

MyProject Project

9MA10256.04 175

Compiling

Launching the Application
What’s in This Chapter

Overview .. 176
Setting Up the Communication ... 176
Connect to a Device .. 181
On-Line Status.. 182
Downloading the Application .. 183
Control the PLC Execution ... 184

Overview

Description
In order to download and debug the application, you have to establish a
connection with the target device. This chapter focuses on the operations required
to connect to the target and to download the application. A separate chapter is
dedicated to Debugging, page 194.

Setting Up the Communication

Overview

Description
In order to establish the connection with the target device, verify all connections
and network communication.

Follow this procedure to set up and establish the connection to the target device:

Step Action

1
Click On-line > Set up communication... menu of the Programming tab. This causes
the following dialog box to appear.

2 Select the appropriate protocol:
• CAN, page 177

176 9MA10256.04

Launching the Application

Step Action

• GDB, page 177
• Modbus, page 177
• ModbusTCP, page 178
• DMI, page 180

3 Click Activate button to active the protocol.

4 Click Properties button to modify the properties of the activated protocol.

5 Fill in all the protocol-specific settings.

For example: the address or the communication
timeout (that is how long Programming must wait for an answer from the target before
displaying a communication error message).

6 Click OK button to apply the changes you made to the communication settings.

Now, you can establish communication with the target, page 181.

CAN
Select CAN in the case of CAN connection:

Parameter Description Values Default Note

Baud_CAN_OB CAN protocol baud rate

On-board

2 = 500 kbaud

3 = 250 kbaud

4 = 125 kbaud

5 = 125 kbaud

6 = 50 kbaud

2 -

Addr_CAN_OB On-board CAN serial
address

1…127 1 The address is determined by the sum of
this value the value of the DIP switches

GDB
The GDB protocol is not implemented in the FREE Smart/FREE Evolution/FREE
Advance/FREE Optima controllers.

The GDB protocol is reserved for internal software use.

Modbus
Select Modbus in the case of USB/RS-485 connection:

Parameter Description Values Default Note

Baud_RS485_OB Modbus protocol baud
rate On-board

0 = 9600 baud

1 = 19200 baud

2 = 38400 baud

3 = 57600 baud

4 = 76800 baud

5 = 115200 baud

2 -

Addr_RS485_OB On-board RS-485 serial
address

1…255 1 The address is determined by the
sum of this value the value of the DIP
switches

Proto_RS485_OB On-board RS-485
protocol selection

2 = uNET

3 = Modbus/RTU

4 = BACnet MS/TP

3 -

9MA10256.04 177

Launching the Application

Parameter Description Values Default Note

Databit_RS485_OB RS-485 data bit number
On-board

8 8 Fixed at 8

Stopbit_RS485_OB On-board RS-485 stop bit
number

1 = 1 stop bit

2 = 2 stop bit

1 -

Parity_RS485_OB On-board RS-485
protocol parity

0 = NULL

1 = ODD

2 = EVEN

2 -

Modbus TCP
Select the ModbusTCP protocol in the case of Ethernet connection, using the
relevant communication module if necessary.

In the protocol properties window:
• The IP or hostname box is for entering either an IP address (the default

setting for FREE Evolution/Advance is 10.0.0.100) or a host name on a local
network.

• The TCP/IP communication Port box is set by default to 502.
Connect the PC Ethernet cable to FREE Evolution/Advance.

Configure the TCP/IPv4 connection in the Ethernet port properties of your PC with
the address (10.0.0.101):

NOTE: The default FREE Evolution/Advance configuration is 10.0.0.100: the
PC Ethernet port is thus configured with an address different to the default
address (for example 10.0.0.101, the first three fields must be the same, the
fourth different).

Click the OK button: the PC is configured to dialog with FREE Evolution/Advance
via the Ethernet port.

FREE Evolution/Advance has a number of BIOS parameters for managing the
connection between the target and FREE Studio Plus but, unlike FREE Smart, it
does not have a default menu displayed on the on-board or remote display.

Passive Ethernet Plugin:

Internet Protocol Version 4 (TCP/IPv4) Properties

CancelOK

General

You can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

Obtain an IP address automatically

Obtain DNS server address automatically

10 .000 .000 .101

255 .255 .255 .255

. . .

IP address:

Subnet mask:

Default gateway:

Advanced...Validate settings upon exit

Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

Use the following IP address:

. . .

. . .

178 9MA10256.04

Launching the Application

The Ethernet passive plug-in configuration parameters involve the configuration of
the TCP/IP communication port (for example 502), the IP address, the gateway,
and the subnet mask.

The “Default Gateway” parameters are not relevant in the local point-to-point
network.

For connections via a router the “Default Gateway”, parameters must be set
according to the network configuration, as in the following example:

Parameter Description Value Parameter Description Value

Ip_1_ETH_PI Ethernet passive Plug-in

IP address (first part)

192 DefGtwy_1_ETH_PI Default Gateway

(first part)

192

Ip_2_ETH_PI Ethernet passive Plug-in IP
address

(second part)

168 DefGtwy_2_ETH_PI Default Gateway

(second part)

168

Ip_3_ETH_PI Ethernet passive Plug-in IP
address

(third part)

0 DefGtwy_3_ETH_PI Default Gateway

(third part)

0

Ip_4_ETH_PI Ethernet passive Plug-in IP
address

(fourth part)

100 DefGtwy_4_ETH_PI Default Gateway

(fourth part)

1

FREE Panel EVP Specific HMI Management:

In addition to the BIOS parameters, FREE Panel EVP manages the HMI menu:

Parameter Description Values Default Note

Hmi_language Display language
(local or remote)

0…65535 0 -

HMIList_current Current HMI 0 = Remote HMI 1 / 1 = Remote HMI 2

2 = Remote HMI 3 / 3 = Remote HMI 4

4 = Remote HMI 5 / 5 = Remote HMI 6

6 = Remote HMI 7 / 7 = Remote HMI 8

8 = Remote HMI 9 / 9 = Remote HMI 10

10 = not used

11 = Local HMI

11 Local HMI is identified on
the display as network In
Connection as HMI

Remote HMI is identified
In Connection as
Remote HMI

Ten remote menus are available. The first menu parameters are listed below. The
others are similar:

Parameter Description Values Default Note

HmiList_ID_1 Remote HMI 1 navigation ID list 0…254 0 -

HmiList_Res_1 Remote HMI 1 navigation resource
type

1 = RTU (RS-485 Modbus
RTU)

2 = TCP (Modbus TCP)

3 = CAN (CAN)

3 = CAN -

HmiList_Addr_1 Remote HMI 1 navigation resource
address for CAN, RTU, and TCP (IP
part 1)

0…255 0 For example:

CAN:

2.500000

RS-485:

1.38400.P81

HmiList_Addr_2 Remote HMI 1 navigation resource
address for TCP

(IP part 2)

0…255 0

HmiList_Addr_3 Remote HMI 1 navigation resource
address for TCP

(IP part 3)

0…255 0

9MA10256.04 179

Launching the Application

Parameter Description Values Default Note

Modbus TCP:

010.000.000.100

HmiList_Addr_4 Remote HMI 1 navigation resource
address for TCP

(IP part 4)

0…255 0

HmiList_File_1 Remote HMI navigation file 1 (DOS
8.3 uppercase format)

Alphanumeric string, 8
characters

******** The default name is
HMIREM.KBD

DMI
Select DMI in the case of connection with the FREE Smart with the DMI
programming cable.

FREE Smart has parameters in the CF folder in the controller for managing the
connection between the target and FREE Studio Plus.

If the target is “empty”, for example there is no controller application on the device,
FREE Smart displays the message FFrrEEEE. Otherwise, a controller application
exists on FREE Smart and the message PLC appears on the display.
Simultaneously press the UP and DOWN keys to view the message.

Follow this procedure to modify a parameter:

Step Action Result

1
From the main display, press the set key
and the esc key simultaneously to open the
programming menu:

The programming menu is opened.

The label of the first subfolder is displayed
(PAr in this case):

2 Press set key to open the Parameters
menu.

The label of the first subfolder is displayed
(CL).

3 Press the UP and DOWN keys to scroll the
other labels until you find the one indicated
by CF.

-

4 Press set key to open the folder. The label of the first parameter is displayed.

5 Press the UP and DOWN keys to scroll
through the various parameters until you
find the connection parameters.

-

6 Press set key to view the value of the
parameter.

The value of the parameter is displayed.

7 Press the UP and DOWN keys to modify this
value.

-

8 Press set key to validate the new value of
the parameter.

NOTE: Press esc to take you back to
the previous folder without saving the
value entered.

-

9 Press esc key to go back to the main
display.

-

10 Use the UP and DOWN keys to scroll the
other parameters and repeat the procedure
(step 5 to 9) to view the values and - if
necessary - edit them.

-

The parameters values needed for correct connection between the FREE Smart
target and FREE Studio Plus:

180 9MA10256.04

Launching the Application

Parameter Description Values Default Parameter
Visibility
Level

Note

CF01 (1) Select COM1
(TTL) protocol

0 = reserved

1 = Modbus

1 2 Must be set to 1

CF30 Modbus protocol
controller address

1...255 1 3 Check that the set values correspond
to those defined by the tab

On-line > Set up > Communication
> Properties

CF31 (2) Modbus protocol
baud rate

0, 1, 2 = not used

3 = 9600 baud

4 = 19200 baud

5 = 38400 baud

6 = 57600 baud

7 = 115200 baud

3 3

CF32 Modbus protocol
controller parity

1 = EVEN

2 = NONE

3 = ODD

1 3

(1) COM1 = The TTL port and the RS-485 port cannot be used simultaneously.

(2) CF31 5 = 38400 baud (RS-485: not supported)

6 = 57600 baud (RS-485: not supported)

7 = 115200 baud (RS-485: not supported)

For other parameters and to manage parameter visibility levels, refer to FREE
Smart Logic Controller - Hardware Guide.

Saving the Last Used Communication Port

Description
When you connect to target devices using a serial port (COM port), you usually
use the same port for all devices (many PCs have only one COM port). You may
save the last used COM port and let Programming use that port to override the
project settings: this feature is useful when you share projects with other
developers, which may use a different COM port to connect to the target device.

In order to save your COM port settings, enable the Use last port option in File >
Options... > General tab.

Connect to a Device

Prerequisite
You have to set up the communication, page 176.

Procedure
To launch the connection to the physical device, perform one of the following
operations:

• In the dedicated toolbar, click

9MA10256.04 181

Launching the Application

• In the menu, click On-Line > Connect.

Information Messages
Before establishing the connection, the software could display an information
message:

Message Cause Risk Solution

“Target Device ID
indicated for the
project is different
from the value from
the target. Proceed
Anyway ?”

The firmware of the
device in the
application is different
from the firmware of
the physically
connected device.

Unintended
Equipment Operation

• Update the BIOS
of the physically
connected
device.

• Change the
device in the
application

• Change the
physical device.

“Could not correctly
identify the connected
device: found a
FREEAdvance 668.11
instead. Connect
anyway?”

Click OK to continue the connection process.

On-Line Status

Connection Status

Description
The state of communication is displayed in a box next to the right border of the
Status bar.

If you have not yet attempted to connect to the target, the state of communication
is set to Not connected.

When you connect to the target device, the state of communication becomes one
of the following:

•
Error: the communication cannot be established. You should verify both the
physical link and the communication settings, page 176.

•
Connected: the communication has been established.

Project Status

Description
Next to the communication status there is another box which indicates the status
of the project currently executing on the target device.

When the connection status is Connected, the project status takes on one of the
following values (depending on source code):

NOT CONNECTED

ERROR

CONNECTED

182 9MA10256.04

Launching the Application

•
No code: no project is executing on the target device.

•
Diff. code: the project currently executing on the target device differs from the
one currently open in the software; moreover, no debug information
consistent with the running project is available: thus, the values displayed in
the watch window or in the oscilloscope are not reliable and the debug mode
cannot be activated.

•
Diff. code, Symbols OK: the project currently executing on the target device is
not the same as the one currently open in the software; however, some debug
information consistent with the running project is available (for example, the
project has been previously downloaded to the target device from the same
PC): the values displayed in the watch window or in the oscilloscope are
reliable, but the debug mode still cannot be activated.

•
Source OK: the project currently executing on the target device is the same
as the one currently open in the software: the debug mode can be activated.

Downloading the Application

Description
A compiled PLC application must be downloaded to the target device in order to
have the processor execute it. The steps presents how to download an application
code into a target device.

Step Action

1 Connect the target device to the PC where FREE Studio Plus is running.

2
Click On-line > Download code.

Result:

Programming verifies whether the project has unsaved changes. If so, it automatically
starts the compilation of the application.

The binary code is sent to the target device.

After the end of the download, the controller automatically resets.

Then the downloaded code is executed by the processor on the target device.

WARNING
AUTOMATIC RESTART OF CONTROLLER
• Do not download your application without first accessing the state of your

machine or process.
• Do not download your application without first ascertaining that there is no

risk of injury to anyone in or around your machine or process.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NO CODE

DIFF. CODE

DIFF. CODE (SYM)

SOURCE OK

9MA10256.04 183

Launching the Application

Control the PLC Execution

Overview
The PLC application execution can be controlled using the related functions.

These functions are accessible in the Project toolbar, page 96 and in the On-line
menu, page 29.

The controller will start executing program logic when power is applied to the
equipment. It is essential to know in advance how the outputs will affect the
process or machine being controlled.

At start up, the controller will attempt to start executing program logic when power
is applied to the equipment, regardless of the reason the controller had previously
stopped. It is essential to know in advance how an unconditional start will affect
the process or machine being controlled.

WARNING
UNINTENDED MACHINE START-UP
• Conduct a thorough risk analysis to determine the effects, under all

conditions, of an unconditional start of the application.
• Verify the state of security of your machine or process environment before

applying power to the controller or starting the application with FREE Studio
Plus software.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Never assume that your controller is in a certain controller state before

commanding a change of state, configuring your controller options, or
modifying the physical configuration of the controller and its connected
equipment.

• Before performing any of these operations, consider the effect on all
connected equipment.

• Before acting on a controller, always positively confirm the controller state,
checking for the presence of output forcing, and reviewing the controller
status information via FREE Studio Plus.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Halt

You can stop the PLC execution by clicking On-line > Halt.

Cold Restart
The PLC application execution will be restarted and both retain and non-retain
variables will be reset.

You can cold restart the PLC execution by clicking On-line > Cold restart.

184 9MA10256.04

Launching the Application

Warm Restart
The PLC application execution will be restarted and only non-retain variables will
be reset.

You can warm restart the PLC execution by clicking On-line > Warm restart.

Hot Restart
The PLC application execution will be restarted and no variables will be reset.

You can hot restart the PLC execution by clicking On-line > Hot restart.

Reboot Target

You can reboot the target by clicking On-line > Reboot target.

9MA10256.04 185

Launching the Application

Simulation
What’s in This Chapter

Simulation Function... 186
Simulation Operating Modes .. 187
Simulation with FREE Studio Plus .. 188
Simulation Interface... 189

Simulation Function

Overview

Main Purpose
The main purpose of the simulation function is to execute PLC applications and
HMI pages simultaneously in a simulated environment.

Simulation can simulate execution of:
• PLC applications, IEC 61131-3 (made in Programming tab).
• HMI pages (made in Display tab).

The execution can thus take place on the same PC used for the development
process with the advantage of a faster and simpler testing and debugging phase
because the real final hardware is not necessary.

NOTE: The simulation is not intended as a substitute for real, empirical testing
during commissioning. It is a means for the programmer to submit its
application, or parts of application, to unit testing and verification. Only
empirical testing with live equipment in the complete application can be
considered a valid mechanism for validation.

WARNING
UNINTENDED EQUIPMENT OPERATION

Always empirically test your application during commissioning before placing
your application and associated equipment into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

186 9MA10256.04

Simulation

Simulation Environment Components

Description
The following diagram shows the main components of the simulated environment:

Item Description

1 Simulation Simulation function allows you to execute PLC applications and
HMI pages simultaneously in a simulated environment.

2 Programming PLC development environment.

3 Display HMI development environment.

4 TCP/IP Server Assignment to the simulated controller of a local IP address for
communication with development environments.

5 Catalog Repository of the target definitions, used by the software
components.

6 Target file (TGSX) Catalog components that define the targets to simulate. These
files have TGSX extension.

7 Workspace file (WKSX) User file with WKSX extension that contains the elements of a
working session of the simulator (I/O panels, source PLC, HMI
project, and so on). The project can have multiple simulation
workspace files, and you can manage them.

Simulation Operating Modes

Overview
Simulation is activated when the target simulation file (TGSX) is available in the
catalog.

The correct TGSX file is selected automatically by the calling program, depending
on the current active target in the PLC or HMI project.

Simulation has the following features:
• Simultaneous simulation of both PLC application and HMI pages.
• Availability of the target panel to have a visual and realistic representation of

the target to run and interact with HMI pages.
• Execution of the simulated application tasks handled by a scheduler that can

reproduce the real target scheduler policy.

Alarms

Preprocessing Regul and Control completed.
Preprocessing Application completed.
Preprocessing Communication completed.
Preprocessing Pumping completed.
Preprocessing display completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

File HelpWindowPageProjectViewEdit

My Project
Properties

Global procedures
Resources [BaseLanguage]

Global variables
Messages

Pages
Page1

HMI Project

Configuration Programming Display

Machine Expert - HVAC
Commissioning

Ready EDIT MODE NOT CONNECTED....

HMI Actions

Local actions Global actions
Key

Enter
Up
Down

Edit
PrevField
NextField

Action

HMI Properties

Properties Events

CharDimX
CharDimY
Font
Background color
Text color

Page border
Title bar

6
8
EWP2_6X8

No
No

Flat

Doc All

Caption
Appearance

Current profile: Remote and local Configure profiles

Target vars

HMI Vars and Parameters

sysBacklight

sysMSK
sysLocalLeds
sysLangID
sysKeyPressed
sysCurrentSelectedPosition

sysTimer
sysVer

LocalParameters

C:\Users\My Project\My Project.plcprj

Preprocessing Regul and Control completed.
Preprocessing Application completed.
Preprocessing Communication completed.
Preprocessing Pumping completed.
Preprocessing display completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

Operator and standard blocks Target variables Target blocks

Operators and blocks

ABS
ACOS
ADD
ADR
AND
ASIN
ATAN

ATAN2
CEIL
CONCAT
COS
COSH
DELETE
DIV

EQ
EXP
FIND
FLOOR
GE
GT
IMOVE

Project

Configuration Programming Display

Machine Expert - HVAC
Commissioning

Ready EDIT MODE NOT CONNECTED....

File Project On-line Debug Variables Window HelpToolsViewEdit

My Project

Tasks
Global_vars
main

Watch

Symbol Value

Library tree

Project librairies
Application
basic

Regul and Control
Pumping
display
Communication

Local variables

Name Type Address Array Init value Attribute

0001

0003
0002 cnt := cnt + 1;

main

C:\Users\My Project\My Project.plcprj

Simulation - simESME11.WKSX

I/O panels Output window

Add Remove Rename

Workspace:

Target name:

PLC project:

HMI project:

simESME11.WKSX

C:\Users\Destop\ESME_Thermsotat_Exercise_M172\Thermsotat_Exercise_M172\H

C:\Users\Destop\ESME_Thermsotat_Exercise_M172\Thermsotat_Exercise_M172\P

M172 Performance 596.9

File Help

Analogue Inputs
Analogue Outputs
Impulse Counter

** Loading force secondary plc function
** Force secondary plc function not found
** Communication starting
WIN32: QueryPerformanceFrequency returned 28359391
** Initializing PLC runtime 0 for 596p9
** Starting to read PLC code from C:\Users\My_Project
** Closing file simESME11_P1cCode0.bin
** Initializing PLC runtime 1 for 569p6
** Starting to read PLC code from C:\Users\My_Project
** Closing file simESME11_P1cCode1.bin
** PLC run-time #0> Starting to load PLC application
** Starting to load PLC for runtime 0 (type0fStart
** PLC loaded into memory
** Application release info: PLC 0.1
** PLC run-time #0> PLC application successfully load
** Starting to load PLC for runtime 1 (type0fStart
** Starting to load PLC for runtime 1 (type0fStart
** Application release info: PLCM172 0.0
** ManualSystemStart, system not started yet

1
2

4

3

7 6

5

9MA10256.04 187

Simulation

• The simulated target can have some parts implemented in C and/or IEC to
implement the real target behavior and characteristics to react to PLC
application as the real target would do.

• Use of the I/O panels, that you can configure to view and/or modify the
simulated status and I/O variables of the target.

Simulation with FREE Studio Plus

Start the Simulation
To carry out a simulation session:

Step Action

1 Write your PLC code in Programming or your HMI pages in Display.

2
Click to compile the project and to check the correctness of the code.

3 According to the tab:
• In Programming tab, click Debug > Simulation mode to activate the simulation.

• In Display tab, click Simulation mode icon.

4
You can choose to open a recently used simulator workspace (WKSX) or create a new
one if it is the first simulation session with this project. The last used workspace is then
proposed as the default choice. The list of the used workspaces is saved inside the
project itself.

Click OK.

Result: The simulation control panel is displayed, page 190.

5 Compile and download the code inside the simulated target.

NOTE: FREE Studio Plus can activate the simulation status that is similar to
the normal connection to a physical target device, with a different connection
status indicator. While in simulation status, the project will be built for the x86
processor and the connection will take place using the GDB protocol over
TCP/IP on the local host (127.0.0.1).

Use the Simulation
The simulation mode makes it possible to verify that the behavior of the controller
conforms to your expectations.

Choose workspace

Create new workspace

Name:

Directory:

Open existing workspace

D:\HVAC_Projects\ESME_Thermostat_M172

simESME11.WKSX

Choose other...

OK Cancel

Delete

188 9MA10256.04

Simulation

If not, you must correct any anomalies present in the project before its actual
commissioning.

To test your project, you can:
• Simulate local I/O and work on pages (with mouse and keyboard) in the target

panel (if there is one).
• Modify the values of the application parameters with the I/O panels.

For more details, refer to Simulator Interface, page 189.
NOTE: You can debug with the Programming debugging features, page 194,
independently of the real target.

Stop the Simulation
The simulation session is terminated when you deactivate the simulation mode
inside FREE Studio Plus (and the simulator is automatically closed).

You can also manually close simulation. In this case, the communication or the
next downloads in FREE Studio Plus go in the timeout state, as in the real
situation when the physical target is powered off or disconnected.

When the simulation is stopped, everything is saved inside the current workspace
(I/O panels, window positions, and so on).

FREE Studio Plus saves the list of recently used workspaces inside the project for
further use.

Simulation Interface

Simulation Interface Overview

Overview
Simulation is dialog-based Windows program that is one or more independent
windows that can be moved and placed on the screen.

The following pictures show the main windows:

Control Panel Target Panel I/O panels

Simulation - simESME11.WKSX

I/O panels Output window

Add Remove Rename

Workspace:

Target name:

PLC project:

HMI project:

simESME11.WKSX

D:\HVAC_Projects\ESME_Thermostat_M172\HMIRemote\Thermsotat_M172.pajx

D:\HVAC_Projects\ESME_Thermostat_M172\Thermsotat_M172.plcprj

M172 Performance 596.9

File Help

Analogue Inputs
Analogue Outputs
Impulse Counter

** Loading force secondary plc function
** Force secondary plc function not found
** Communication starting
WIN32: QueryPerformanceFrequency returned 28359391
** Initializing PLC runtime 0 for 596p9
** Starting to read PLC code from D:\HVAC_Projects
** Closing file simESME11_P1cCode0.bin
** Initializing PLC runtime 1 for 569p6
** Starting to read PLC code from D:\HVAC_Projects
** Closing file simESME11_P1cCode1.bin
** PLC run-time #0> Starting to load PLC application
** Starting to load PLC for runtime 0 (type0fStart
** PLC loaded into memory
** Application release info: PLC 0.1
** PLC run-time #0> PLC application successfully load
** Starting to load PLC for runtime 1 (type0fStart
** PLC loaded into memory
** Application release info: PLCM172 0.0
** ManualSystemStart, system not started yet

Analogue Inputs

AIL1

AIL2

AIL3

AIL4

AIL5

AIL6

AIL7

AIL8

AIL9

AIL10

AIL11

AIL12

0

0

0

0

0

0

0

0

0

0

0

0

Analogue Outputs

AOL1

AOL2

AOL3

AOL4

AOL5

AOL6

0

0

0

0

0

0

9MA10256.04 189

Simulation

Control Panel

Overview
This is the main window of the simulator. When you launch the simulator, the
control panel is shown in a compacted form, with 5 main buttons and no menu bar.

When you click the Expand button, it is expanded to show:
• The menu bar with the standard new/load/save/exit commands.
• A central panel showing the main characteristics of the current workspace.
• An output window showing execution logs.
• The I/O panels list.

With the control panel, you can control and monitor the state of the simulated PLC
runtime, choose which other windows to show or hide (and their topmost
behavior), and manage I/O panels.

Compacted Control Panel Expanded Control Panel

1 Stop PLC code

2 Run PLC code

3 Show Target Panel, page 190

4 Show I/O Panels, page 191

5 Expand Control Panel

6 Target Panel topmost (foreground)

7 I/O Panel topmost (foreground)

Target Panel

Overview
This is a floating window that shows a visual representation of the simulated
physical target. Its presence and layout is defined inside the target definition file
(TGSX).

This panel has an image of the real target, with some sensible areas that show
simulated inputs or outputs (for example LEDs for digital outputs) and a simulated
LCD graphic display where the HMI pages are drawn.

Impulse Counter

FDI1_counter

FDI1_frequency

FDI1_value

FDI2_counter

FDI2_frequency

FDI2_value

0

0

0

0

Simul..

1

2 3

6 7

4 5 Simulation - simESME11.WKSX

I/O panels Output window

Add Remove Rename

Workspace:

Target name:

PLC project:

HMI project:

simESME11.WKSX

D:\HVAC_Projects\ESME_Thermostat_M172\HMIRemote\Thermsotat_M172.pajx

D:\HVAC_Projects\ESME_Thermostat_M172\Thermsotat_M172.plcprj

M172 Performance 596.9

File Help

Analogue Inputs
Analogue Outputs
Impulse Counter

** Loading force secondary plc function
** Force secondary plc function not found
** Communication starting
WIN32: QueryPerformanceFrequency returned 28359391
** Initializing PLC runtime 0 for 596p9
** Starting to read PLC code from D:\HVAC_Projects
** Closing file simESME11_P1cCode0.bin
** Initializing PLC runtime 1 for 569p6
** Starting to read PLC code from D:\HVAC_Projects
** Closing file simESME11_P1cCode1.bin
** PLC run-time #0> Starting to load PLC application
** Starting to load PLC for runtime 0 (type0fStart
** PLC loaded into memory
** Application release info: PLC 0.1
** PLC run-time #0> PLC application successfully load
** Starting to load PLC for runtime 1 (type0fStart
** PLC loaded into memory
** Application release info: PLCM172 0.0
** ManualSystemStart, system not started yet

190 9MA10256.04

Simulation

You can interact with this panel with the mouse or with the PC keyboard that
emulates the real device keys.

You can right-click on it and select:
• Topmost: place the panel in foreground (it stays always above any other

window).
• Locked: you can no more move the panel on your screen.
• Close: close the panel.

1 Simulated buttons

2 Simulated LEDs

3 Simulated LCD screen

4 Simulated I/Os

I/O Panels

Overview
These small floating windows lets you monitor and modify the values of the
various I/O and status variables of the simulated target; the only requirement is
that the object to watch is allocated on data-block.

You can create as many I/O Panels as you want. You can also decide which
objects to put on each panel freely. They are complementary to the target panel
because with them you can watch and edit the I/O modules that are not already
visible there.

The I/O panels can be put in Topmost mode (always above the visible windows).
This is useful for example while debugging with Programming at full screen. The
configuration is then saved inside the workspace file.

1

4

4

2

3

9MA10256.04 191

Simulation

Adding Elements to Panels
To add an element (or “signal”) to an existing I/O panel to watch or edit its value,
you can drag it from Programming inside the panel itself. You can drag it from the
target variables panel, from the workspace tree, or from a variables grid inside an
editor.

Depending on the type of the source variables, an analog (slider or progress bar)
or digital (LED or button) control is generated, and associated with the original
signal.

It is possible to add only PLC variables that reside on a DataBlock, with an explicit
address (for example %MW1.0); you cannot add to an I/O panel automatic, local,
or global variables.

Editing I/O Panel Elements
You can edit the advanced options of each signal by clicking the small icon on the
left of each name.

For a digital I/O, the options are:
• Label to be viewed on the panel;
• Name of the associated source variable, and its index if it is an array;
• Read-only attribute: the control is an LED (output, read-only) or a button

(input,read/write);
• Selector attribute: it is valid only for read/write variables (buttons), if active the

button keeps its value (pressed or not pressed), otherwise it keeps the new
value only as long as the mouse button is pressed, then it goes back to its
previous value.

For an analog I/O, the options are:
• Label to be viewed on the panel;
• Name of the associated source variable, and its index if it is an array;
• Read-only attribute: the control is a progress-bar (output, read-only) or a

slider (input, read/write);
• Minimum and maximum limits: if not set, absolute minimum and maximum

limits of the original data type is used. The progress and slider uses these
limits; they can be individually activated or not.

C:\My Project\My Project.plcprj

Loading target image .. completed
File PLCFREEADVANCE.imgx.simul updated

Loading target image .. completed
File PLCFREEADVANCE.imgx.simul updated

Build Find in project Debug Resources HMI Output

Output

Operator and standard blocks Target variables Target blocks

Operators and blocks

ABS
ACOS
ADD
ADR
AND
ASIN
ATAN

ATAN2
CEIL
CONCAT
COS
COSH
DELETE
DIV

EQ
EXP
FIND
FLOOR
GE
GT
IMOVE

Configuration Programming Display Commissioning

Ready EDIT MODE NOT RUNNING CONNECTED

File Project On-line Debug Variables Window HelpToolsViewEdit

EEPROM_Param

Output_Heat

Project

Programs

Aux Variables

ATC_Control

Global shared

P EVE_Comm
P Thermostat

Local variables

Alarms

IO_Mapping
AI1_E
AIarm
DI1_E
DI2_E

DO2_E
NTC_Probe

Tasks

DO1_E

Analogue Outputs

AOL1

AOL2

AOL3

AOL4

AOL5

AOL6

0

0

0

0

0

0

Analogue Inputs

AIL1

AIL2

AIL3

AIL4

AIL5

AIL6

AIL7

AIL8

AIL9

AIL10

AIL11

AIL12

0

0

0

0

0

0

0

0

0

0

0

0

Impulse Counter

FDI1_counter

FDI1_frequency

FDI1_value

FDI2_counter

FDI2_frequency

FDI2_value

0

0

0

0

DO1_E

Local variables

Name Type Address Array Init value Attribute

main

Free Studio Plus

192 9MA10256.04

Simulation

Removing Elements from I/O Panels
To remove a signal, edit the element, page 192 and click Remove button.

I/O Panels List

Overview
When the control panel is expanded, you can manage (add/remove/rename) the I/
O panels.

Adding a New I/O Panel
To add a new empty panel, click the relevant Add button in the control panel.

A new empty panel without name is created and opened.

Editing an I/O Panel
In order to rename the panel, select it in the list and click the Rename button. You
are asked for the name to give to the window that is shown in its title bar.

Any panel can be drag around the screen in any place. To temporary hide it you
can toggle the check next to its name in the list.

You can also toggle the topmost button to bring the panels above the other
windows (this is a global setting that applies to the panels).

Removing an I/O Panel
In order to remove a panel, select it in the list and click the remove button; the
panel and its signals and settings are permanently removed.

Analog signal properties

Signal label AIL6

5

sysLocalAnalogInputsVariable name

Min. value

Max. value

Read only

Indexes

Remove

Move up

Move down

CancelOK

9MA10256.04 193

Simulation

Debugging
What’s in This Chapter

Overview .. 194
Watch Window .. 194
Oscilloscope ... 200
Edit and Debug Mode .. 211
Live Debug ... 212
Triggers .. 215
Graphic Triggers ... 230

Overview

Description
Programming provides several debugging tools, which help you to verify whether
the application behaves as intended.

All these debugging tools basically allow you to watch the value of selected
variables while the PLC application is running.

Programming debugging tools can be gathered in two classes:
• Asynchronous debuggers. They read the values of the variables you selected

with successive queries issued to the target device. Both the manager of the
debugging tool (that runs on the PC) and, potentially, the task which is
responsible to answer those queries (on the target device) run independently
from the PLC application. The values of two distinct variables being sampled
in the same moment are not necessarily in concordance with each other with
respect to the PLC application execution (one or more cycles may have
occurred). For the same reason, the evolution of the value of a single variable
is not consistent with its actual value in the controller memory, especially
when it is updated rapidly within the application.

• Synchronous debuggers. They require the definition of a trigger in the PLC
code. They refresh simultaneously all the variables they have been assigned
every time the processor reaches the trigger, as no further instruction can be
executed until the value of all the variables is refreshed. As a result,
synchronous debuggers obviate the limitations affecting asynchronous ones.

This chapter presents how to debug your application using both asynchronous
and synchronous tools.

Watch Window

Overview

Description
The Watch window allows you to monitor the values of a set of variables. Being an
asynchronous tool, the Watch window does not establish synchronization of
values. Values of the variables in the Watch window may refer to different
execution cycles of the corresponding task.

The Watch window contains an item for each variable that you added to it. The
information displayed in the Watch window includes the name of the variable, its
value, its type, and its location in the PLC application.

194 9MA10256.04

Debugging

Opening and Closing the Watch Window

Description
Open/close the Watch window, by applying one of the following operations:

• In the menu, click View > Tool windows > Watch.

• In the Main toolbar, click .
• Press the Ctrl+T key.

Closing the Watch window means simply hiding it, not resetting it. If you close the
Watch window and then open it again, you will see that it still contains all the
variables you added to it.

Adding Items to the Watch Window

Description
To display a variable in the Watch window, you need to add it to the watch list.

NOTE: All the variables of the project can be added to the Watch window,
regardless of where they were declared.

Adding a Variable from a Textual Source Code Editor
To add a variable to the Watch window from a textual (IL or ST) source code
editor:

Step Action

1 Double-click the variable you wish to display in the Watch window.

2
Drag the selected variable in the Watch window:

Watch

Symbol Value Type

HMIPIDTEST FALSE

Location

BOOL global

HMIPIDTHRESHOLD

PARCTDOWNPRESET

BASETIME

0.2

100

0

REAL

INT

UDINT

global

global

@FAST:PIDMODESELECTOR

Watch

Symbol Value Type

HMISINVAL 0.982414

Location

REAL @FAST:LOOPS

9MA10256.04 195

Debugging

Adding a Variable from a Graphical Source Code Editor
To add a variable to the Watch window from a graphical (LD, FBD, or SFC) source
code editor:

Step Action

1

Click Edit > Watch mode.

2 Click the variable to display in the Watch window.

3 A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is to receive
the object you have just clicked.

To add the variable in the Watch window, select Watch and click OK.

4

Once you have added to the Watch window all the variables you want to display, click Edit > Insert/Move mode, the
mouse cursor turns to its original shape.

Adding a Variable from a Variables Editor
To add a variable to the Watch window, select the corresponding record in the
variables editor and drag it in the Watch window:

BOOL

BOOL
BOOL

start1
start2
ready
run
x

BOOL

BOOL5
4

1
2
3

Address ArrayName Type

Local variables

NO
NO
NO
NO
NO

AUTO
AUTO
AUTO
AUTO
AUTO

Debug windows list

OK Cancel

Symbol to add:
start1

Debug windows

Oscilloscope
Watch

Symbol Value Type

BOOLTRUEG_I_IALARM

G_I_IDIFFERENTIATION 28264 INT

Watch

start1 BOOL

BOOL
BOOL

start2
ready
run
x

BOOL

BOOL

NO
NO
NO
NO
NO

4

1
2
3

Name ArrayAddressType
Auto
Auto
Auto
Auto
Auto5

196 9MA10256.04

Debugging

Adding a Variable from the Project Tree
To add a variable to the Watch window, select it in the project tree and drag it in
the Watch window:

Adding a Variable from the Watch Window Toolbar

To add a variable to the Watch window, click Insert new item in the Watch
window toolbar.

You shall type (or select by browsing the project symbols) the name of the variable
and its location (where it has been declared).

Removing a Variable

Description
If you want to remove a variable from the Watch window, select it by clicking its
name once, then press the Delete key.

Refreshment of Values

Normal Operation
The watch window manager reads periodically from memory the value of the
variables.

However, this action is carried out asynchronously. It may happen that a higher-
priority task modifies the value of some of the variables while they are being read.
Thus, at the end of a refreshment process, the values displayed in the window
may refer to different execution states of the PLC code.

Project

Automatic variables
New_var_group1

Project

ready
run
x
start1
start2

Function blocks
Functions
Global variables

Watch

Symbol Value Type

BOOLTRUEG_I_IALARM

G_I_IDIFFERENTIATION 28264 INT

Symbol name

Location

Browse

Browse

Address

CancelOK

Add item to watch window

Watch

Symbol Value Type

HMISINVAL 0.982414

Location

REAL @FAST:LOOPS

9MA10256.04 197

Debugging

Target Disconnected
If the target device is disconnected, the Value column contains three dots.

Object Not Found
If the PLC code changes and Programming cannot retrieve the memory location
of an object in the Watch window, then the Value column contains three dots.

If you try to add to the Watch window a symbol which has not been allocated,
Programming gives the following error message:

Changing the Format of Data

Description
When you add a variable to the Watch window, Programming automatically
recognizes its type (unsigned integer, signed integer, floating point, hexadecimal),
and displays its value consistently. Also, if the variable is floating point,
Programming assigns it a default number of decimal figures.

However, you may need the variable to be displayed in a different format.

To impose another format than the one assigned by Programming, select the

variable and click the Value format button in the toolbar.

Choose the format and confirm your choice.

Watch

Symbol Value Type

HMISINVAL ...

Location

REAL @FAST:LOOPS

Value format

Format

Signed

Unsigned

Float

Octal

Hexadecimal

Binary

ASCII string

UTF-8 string

Float format

Number of decimal 3

OK

Cancel

198 9MA10256.04

Debugging

Working with Watch Lists

Description
You can store to file the set of all the items in the Watch window in order to easily
restore the status of this debugging tools in a successive working session.

Follow this procedure to save a watch list:

Step Action

1
Click the Save watch list button in the Watch window toolbar.

2 Enter the file name and choose its destination in the file system.

You can load a watch list from file, removing the opened one, following this
procedure:

Step Action

1
Click the Load (no appends) watch list button in the Watch window toolbar.

2 Browse the file system and select the watch list file.

The set of symbols in the watch list is added to the Watch window.

You can load a watch list from file, appending to the opened one, following this
procedure:

Step Action

1
Click the Load watch list button in the Watch window toolbar.

2 Browse the file system and select the watch list file.

The set of symbols in the watch list is added to the Watch window.

You can clear the current opened watch list by clicking the Remove all items
from the watch list button.

You can modify the place of a selected item in the current open watch list by

clicking the Move up item into the list button or the Move down item into
the list button.

Autosave Watch List

Description
By selecting the associated option in the project options dialog (refer to Debug,
page 105 for more information), the watch list is automatically saved on the project
closing.

The saved watch list is automatically loaded on the first connection to target when
the project is reopened.

9MA10256.04 199

Debugging

Oscilloscope

Overview

Description
The Oscilloscope allows you to plot the evolution of the values of a set of
variables. Being an asynchronous tool, the Oscilloscope cannot establish
synchronization of samples.

Oscilloscope window is an interface for accessing the debugging functions that
the Oscilloscope makes available:

The Oscilloscope consists of three elements:
• The toolbar allows you to control the Oscilloscope. A detailed description of

the function of each control is given later in this chapter.
• The Chart area includes several items:
◦ Plot: area containing the curve of the variables.
◦ Vertical cursors: cursors identifying two distinct vertical lines. The values

of each variable at the intersection with these lines are reported in the
corresponding columns.

◦ Scroll bar: if the scale of the x-axis is too large to display all the samples in
the Plot area, the scroll bar allows you to slide back and forth along the
horizontal axis.

1983.22 39596.5

ms/div : 3761.33

@TIMED:LOOPS.HMISIN...

@TIMED:LOOPS.X

Track Um Min value Max value Cur value Value/Div

1.000

106173.000

1058.058

-1.000

102216.000

1034.199

0.596

106173.000

1058.058

0.249...

470.25

2.741...

@TIMED:LOOPS.HMISTEP

Oscilloscope

200 9MA10256.04

Debugging

• The lower section of the Oscilloscope is a table consisting of a row for each
variable.

Opening and Closing the Oscilloscope

Description

To open, close the Oscilloscope, click View > Tool windows >
Oscilloscope.

Closing the Oscilloscope means simply hiding it, not resetting it. If you open again
the Oscilloscope after closing it, you will see that plotting of the curve of all the
variables you added to it starts again.

Adding Items to the Oscilloscope

Description
In order to plot the evolution of the value of a variable, you need to add it to the
Oscilloscope.

Unlike trigger windows and the Graphic trigger window, you can add to the
Oscilloscope all the variables of the project, regardless of where they were
declared.

Adding a Variable from a Textual Source Code Editor
To add a variable to the Oscilloscope from a textual (that is, IL or ST) source code
editor, select a variable by double-clicking it, and then drag it into the
Oscilloscope window.

The same procedure applies to all the variables you wish to monitor.

Adding a Variable from a Graphical Source Code Editor
Follow this procedure to add a variable to the Oscilloscope from a graphical (that
is, LD, FBD, or SFC) source code editor:

@TIMED:LOOPS.HMISIN...
@TIMED:LOOPS.HMISTEP

1983.98

@TIMED:LOOPS.X

Track Um

9MA10256.04 201

Debugging

Step Action

1

Click Edit > Watch mode.

2
Click the block representing the variable you wish to trace in the Oscilloscope:

3
A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked:

Select Oscilloscope, then click OK. The name of the variable is now displayed in the
Track column.

The same procedure applies to all the variables you wish to monitor.

Once you have added to the Oscilloscope all the variables you want to observe,

you should click Edit > Insert/Move mode: the mouse cursor turns to its
original shape.

Adding a Variable from a Variables Editor
In order to add a variable to the Oscilloscope, you can select the corresponding
record in the variables editor and then either drag-and-drop it in the Oscilloscope:

1023aoActuator

371042

Track

@FAST:PIDCONTROL.PI...

Debug windows list

OK Cancel

Symbol to add:
start1

Debug windows

Oscilloscope
Watch

VAR REAL

DINT
REAL

VAR
VAR
VAR
VAR
VAR

absSpeed
T
remSpace
T2
sign
prevSpeed

REAL

REAL
REAL

NO
NO
NO
NO
NO
NO

..

..

..

..

..

..6
5
4

1
2
3

Class Array Init value AttributePin Name Type

Local variables

202 9MA10256.04

Debugging

or press the F10 key and choose Oscilloscope from the list of debug windows
which pops up.

Adding a Variable from the Project Tree
In order to add a variable to the Oscilloscope, you can select it in the project tree
and then either drag-and-drop it in the Oscilloscope:

or press the F10 key and choose Oscilloscope from the list of debug windows
which pops up.

Removing a Variable

Description
If you want to remove a variable from the Oscilloscope, select it by clicking its
name once, then press the Delete key.

Variables Sampling

Normal Operation
The Oscilloscope manager periodically reads from memory the value of the
variables.

However, this action is carried out asynchronously. It may happen that a higher-
priority task modifies the value of some of the variables while they are being read.
At the end of a sampling process, data associated with the same value of the x-
axis may refer to different execution states of the PLC code.

9MA10256.04 203

Debugging

Target Disconnected
If the target device is disconnected, the curves of the dragged-in variables are
frozen until communication is restored.

Controlling Data Acquisition and Display

Description
The Oscilloscope includes a toolbar with several commands, which can be used to
control the acquisition process and the way data are displayed. This paragraph
focuses on these commands.

The commands in the toolbar are disabled if no variable has been added to the
Oscilloscope.

Starting and Stopping Data Acquisition
When you add a variable to the Oscilloscope, data acquisition begins immediately.

However, you can suspend the acquisition by clicking Pause acquisition.

The curve freezes (while the process of data acquisition is still running in the

background) until you click Restart acquisition.

In order to stop the acquisition, you may click Stop acquisition.

In this case, when you click Restart acquisition, the plot is reset and restarts
with the actual value of the variable.

Setting the Scale of the Axes
When you open the Oscilloscope, Programming applies a default scale to the
axes.

Follow this procedure to modify the scale value:

204 9MA10256.04

Debugging

Step Action

1
Open the Oscilloscope settings by clicking the Graph properties button in the
toolbar.

2
Set the scale of the horizontal axis, which is common to all the tracks:

3
For each variable, you may specify a distinct scale for the vertical axis:

4 Confirm your settings. The graph adapts to reflect the new scale.

You can also zoom in and out with respect to both the horizontal and the vertical
axes:

Finally, you may also adapt the scale of the horizontal axis, the vertical axis, or
both to include all the samples, by clicking the corresponding item of the toolbar:

Show tracks list

Show time bar

Show grid

500

20

Buffer size

Horizontal scale

Sample polling rate

40000

ms

ms/div

samples

Real rate
45.97

Oscilloscope settings

Tracks list
Name Unit Value/div Offset Hide

@TIMED:SR_PUMPCNTRL. 0.2 0

OK Apply Cancel

Show tracks list

Show time bar

Show grid

500

20

Buffer size

Horizontal scale

Sample polling rate

40000

ms

ms/div

samples

Real rate
45.97

Oscilloscope settings

Tracks list

Name Unit Value/div Offset Hide

@TIMED:SR_PUMPCNTRL. 100 0

OK Apply Cancel

9MA10256.04 205

Debugging

Vertical Split
When you are watching the evolution of two or more variables, you may want to

split the respective tracks. For this purpose, click the Vertical split item in the
Oscilloscope toolbar:

206 9MA10256.04

Debugging

Viewing Samples

If you click the Show samples item in the Oscilloscope toolbar, the tool
highlights the single values detected during data acquisition:

You can click the same item again in order to go back to the default view mode.

Taking Measures
The Oscilloscope includes two measure bars, which can be exploited to take

some measures on the chart. In order to show and hide them, click the Show
measure bars item in the Oscilloscope toolbar.

If you want to measure a time interval between two events, you have to move one
bar to the point in the graph that corresponds to the first event and the other to the
point that corresponds to the second one:

9MA10256.04 207

Debugging

The time interval between the two bars is displayed in the top left corner of the
chart:

You can use a measure bar also to read the value of all the variables in the
Oscilloscope at a particular moment: move the bar to the point in the graph which
corresponds to the instant you want to observe:

In the following table (below the graphic), you can now read the values of all the
variables at that particular moment:

ms

H red cursor H blue cursor

1023.000 1023.00
6.990 10.60

208 9MA10256.04

Debugging

Oscilloscope Settings

You can further customize the appearance of the Oscilloscope by clicking the
Graph properties item in the toolbar.

In the window that pops up you can choose whether to display or not the
Background grid, the Time slide bar, and the Track list:

Changing the Polling Rate

Description
Programming periodically sends queries to the target device in order to read the
data to be plotted in the Oscilloscope.

Follow this procedure to configure the polling rate:

Step Action

1
Click the Graph properties item in the toolbar.

2
In the window that pops up, edit the Sampling polling rate:

3 Confirm your decision.

The rate depends on the performance of the target device (in particular, on the
performance of its communication task). You can read the rate in the
Oscilloscope settings window.

Saving and Printing the Graph

Description
Programming allows you to persist the acquisition either by saving the data to a
file or by printing a view of the data plotted in the Oscilloscope.

Saving Data to a File
You can save the samples acquired by the Oscilloscope to a file in order to further
analyze the data with other tools:

Oscilloscope settings

Show grid

Show time bar

Show tracks list

Show tracks list

Show time bar

Show grid

1000

40

Buffer size

Horizontal scale

Sample polling rate

40000

ms

ms/div

samples

Real rate

45.97

Oscilloscope settings

9MA10256.04 209

Debugging

Step Action

1
Stop the acquisition before saving data to a file.

2
Click the Save tracks data into file in the Oscilloscope toolbar.

3 Choose between the available output file formats:
• OSC is a simple plain-text file, containing time and value of each sample.
• OSCX is an XML file that includes more complete information, which can be

further analyzed with another tab.

4 Choose a file name and a destination directory, then confirm the operation.

Printing the Graph
Follow this procedure to print a view of the data plotted in the Oscilloscope:

210 9MA10256.04

Debugging

Step Action

1
Either suspend or stop the acquisition.

2
Move the time slide bar and adjust the zoom in order to include in the view the elements
you want to print:

3
Click the Print graph item.

Edit and Debug Mode

Description
While both the Watch window and the Oscilloscope do not make use of the
source code, all the other debuggers do: when debug mode is on, changes to the
source code are inhibited and debug tools become active.

Programming automatically enables debug mode when at least one of the
following conditions are met:

• At least one breakpoint is correctly set.
• At least one trigger (graphic or textual) is correctly set.

5.10443e+006 5.10943e+006

ms/div : 500.00

@TIMED:LOOPS.HMISIN...

@TIMED:LOOPS.HMIFRE...

Track Um Min value Max value Cur value Value/Div

1.000

77090.000

0.010

-1.000

302.000

0.010

0.064

10691.000

0.010

1

137

1

@TIMED:LOOPS.HMISTEP

Oscilloscope

9MA10256.04 211

Debugging

• Live debug mode is on.
If or when all the conditions are not met, the debug mode is automatically disabled
and Programming enters in edit mode.

The status bar shows whether the debug mode is active or not:

You cannot enter the debug mode if the connection status differs from Connected
and the application in the software and the controller are the same as indicated by
SOURCE OK.

Live Debug

Overview

Description
Programming can display meaningful animation of the current and changing
state of execution over time of a Program Organization Unit (POU) coded in any
IEC 61131-3 programming language.

To enable and disable the live debug mode, you may click Debug > Live
debug mode.

The controller allows you to force the state of selected outputs and variables to a
defined value for the purposes of system testing, commissioning, and
maintenance. You can force the value of an output and/or variable while your
controller is connected to FREE Studio Plus.

WARNING
UNINTENDED EQUIPMENT OPERATION
• You must have a thorough understanding of how forcing will affect the

outputs relative to the tasks being executed.
• Do not attempt to force I/O that is contained in tasks that you are not certain

will be executed in a timely manner, unless your intent is for the forcing to
take affect at the next execution of the task whenever that may be.

• If you force an output and there is no apparent affect on the physical output,
do not exit FREE Studio Plus without removing the forcing.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

SFC Simulation

Description
As explained in the relevant section of the language reference, an SFC POU is
structured in a set of steps, each of which is either active or inactive at any given
moment. Once started up, this SFC-specific debugging tool animates the SFC
documents by highlighting the active steps.

DEBUG MODE SOURCE OK CONNECTED

212 9MA10256.04

Debugging

Animation OFF Animation ON Animation ON in hold status

A portion of an SFC network is displayed,
diagram animation being off.

The same portion of network is displayed
when the live debug mode is active. The
picture shows that steps S1 and S3 are
currently active, whereas Init, S2, and S4
are inactive.

The same portion of network is displayed
with steps S1 and S3 that are currently
active but in hold status.

This may occur in SFC blocks when they
are children of a parent in inactive status.

The SFC animation manager tests periodically the state of all steps, you are not
allowed to edit the sampling period. A step may remain active too briefly to be
displayed. The fact that a step is never highlighted does not imply that its action is
not executed. It may simply mean that the sampling rate is too slow to detect the
execution.

Debugging Actions and Conditions
As explained in the SFC language reference, a step can be assigned to an action,
and a transition can be associated with a condition. Actions and conditions can be
coded in any of the IEC 61131-3 languages. General-purpose debugging tools
can be used within each action/condition, as if it was a stand-alone POU.

LD Simulation

Description
In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts and coils whose value is
true (in the example, i1 and i2):

The LD animation manager tests periodically the state of all the elements. It may
happen that an element remains true too briefly to be displayed. The fact that an
element is never highlighted does not imply that its value never becomes true (the
sampling rate may be too slow).

9MA10256.04 213

Debugging

FBD Simulation

Description
In live debug mode, Programming displays the values of all the visible variables directly in the graphical source
code editor:

This works for both FBD and LD programming language.

The FBD animation manager tests periodically the state of all the elements. It may
happen that an element remains true too briefly to be displayed. The fact that an
element is never highlighted does not imply that its value never becomes true (the
sampling rate may be too slow).

IL and ST Simulation

Description
The live debug mode also applies to textual source code editors (the ones for IL
and ST). You can watch the values of a variable by hovering with the mouse over
it:

214 9MA10256.04

Debugging

Triggers

Trigger Window

Description
The Trigger window tool allows you to select a set of variables and to have them
updated synchronously in a special pop-up window.

Pre-Conditions to Open a Trigger Window
Memory availability

A trigger window takes a segment in the application code sector, having a well-
defined length. Obviously, in order to start up a trigger window, it is necessary that
a sufficient amount of application memory is available, otherwise an error
message appears.

Incompatibility with graphic trigger windows

A graphic trigger window takes the whole free space of the application code
sector. Once such a debugging tool has been started, it is not possible to add any
trigger window, and an error message appears if you attempt to start a new
window. Once the graphic trigger window is closed, trigger windows are enabled
again.

All the trigger windows existing before the starting of a graphic trigger window
keep working normally. You are not allowed to add new ones.

Trigger Window Toolbar
Trigger window icons are part of the Debug toolbar and are enabled only if
Programming is in debug mode.

Icon Command Description

Add/remove text
trigger

To start a trigger window, select the point of the PLC code where to
insert the relative trigger and then click this button. The same
procedure applies to trigger window removal: in order to definitely
close a debug window, click once the instruction/block where the
trigger was inserted, then click this button again.

Shortcuts key: F9.

Add/remove
graphic trigger

This button operates exactly as the Add/remove text
trigger, except for that it opens a graphic trigger window. It can be
used likewise also to remove a graphic trigger window.

Shortcuts key: Shift + F9.

9MA10256.04 215

Debugging

Icon Command Description

Remove all triggers Clicking this button causes all the existing trigger windows and the
graphic trigger window to be removed simultaneously.

Shortcuts key: Ctrl+Shift+F9.

Trigger list
This button opens a dialog listing all the existing trigger windows:

Shortcut key: Ctrl+I.

Each record refers to a trigger window, either graphic or textual. The following
table explains the meaning of each field.

Field Description

Type T: trigger window.

G: graphic trigger window.

Module Name of the program, function, or function block where the trigger is placed. If the
module is a function block, this field contains its name, not the name of its instance
where you put the trigger.

Line For the textual languages (IL, ST) indicates the line in which the trigger is placed.
For the other languages, the value is always -1.

Trigger Window Interface
Setting a trigger causes a pop-up window to appear, which is called Interface
window: this is the interface to access the debugging functions that the trigger
window makes available. It consists of three elements, as presented below:

Caption bar

The Caption bar of the pop-up window shows information on the location of the
trigger which causes the refresh of the Variables window, when reached by the
processor.

The text in the Caption bar has the following format:
Trigger n° X at ModuleName#Location

Trigger list

Open

Remove all

OK

Remove

Type Module Line

G
T
T
T
T

System
RMS
Fast
Init
Slow

-1
-1
14
-1
-1

Cnt: 0

Condition ...

Trigger For

After

None

events

Symbol Value Type

Trigger n°0 at F_CALCFREQSETPERC#2

Stop

216 9MA10256.04

Debugging

where

X Trigger identifier.

ModuleName Name of the program, function, or function block where the trigger was
placed.

Location Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, Location has the following format:

N1

Otherwise, if ModuleName is in FBD, it becomes:

N2$BT:BID

where:

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, and so on)

BID = block identifier

Controls section

This dialog box allows you to control the refresh of the trigger window to get more
information on the code under scope. A detailed description of the function of each
control is given in the Trigger window controls section. Refer to Using Controls
description, page 227.

All controls are not accessible until at least one variable is dragged into the debug
window.

The Variables section

This lower section of the Debug window is a table consisting of a row for each
variable that you dragged in. Each row has several fields: the name of the
variable, its value, its type, its location (@task:ModuleName), and its description
read from memory during the last refresh:

Trigger Window: Drag and Drop Information
To watch a variable, you need to copy it to the lower section of the Debug window.

This section is a table consisting of a row for each variable you dragged in. You
can drag into the trigger window only variables local to the module where you
placed the relative trigger, or global variables, or parameters. You cannot drag
variables declared in another program, or function, or function block.

Cnt: 0 Triggered

Condition ...

Trigger For

After

None

events

Symbol Value Type
A 10 UINT

Trigger n°0 at F_CALCFREQSETPERC#2

TRUE BOOLB

9MA10256.04 217

Debugging

Refresh of the Values
Let consider the following example:

The value of variables is refreshed every time the window manager is triggered
that is every time the processor executes the instruction marked by the green
arrowhead. However, you can set controls in order to have variables refreshed
only when triggers satisfy the more limiting conditions you define.

The value of the variables in column Symbol is read from memory just before the
marked instruction (in this case: the instruction at line 5) and immediately after the
previous instruction (the one at line 4) has been performed.

Thus, in the previous example the second ST statement has not been executed
yet when the new value of a is read from memory and displayed in the trigger
window. Thus the result of the second ST a is 1.

Trigger Window Controls
Trigger window controls allow you to supervise the working of this debugging tool.

Trigger window controls act in a well-defined way on the behavior of the window,
regardless for the type of the module (either IL or FBD) where the related trigger
has been inserted.

All controls are not accessible until at least one variable is dragged into the
Variables window.

Window controls are made accessible to you through the gray top half of the
debug window:

Button Command Description

Start/Stop This control is used to start a triggering session. While triggering,
you can click this button to stop the session. Otherwise, the
session automatically stops when conditions are reached. You
can click this button to resume the triggering session.

Set step Trigger This control is used to execute a single step trigger. It is enabled
only when there is no active triggering session and None is
selected. The defined condition specified then is active. After the
single step trigger is done, triggering session automatically stops.

Cnt: 0

Condition ...

Trigger For

After

None

events

Symbol Value Type
A 1 UINT

Trigger n°0 at F_CALCFREQSETPERC#2

Ready

218 9MA10256.04

Debugging

Trigger counter

A read-only control Cnt counts how many times the debug window manager has
been triggered since the window was installed.

The window manager automatically resets this counter every time a new triggering
session is started.

Trigger state

This read-only control displays the state of the Debug window. It can assume the
following values.

The trigger has not occurred during the task execution.

The trigger has occurred during the task execution.

System is not triggering. It has been stopped by you or a halt condition has been
reached.

Communication with target interrupted, the state of the trigger window cannot be
determined.

User-defined condition

If you define a condition by using this control, the values in the Debug window are
refreshed every time the window manager is triggered and the user-defined
condition is true.

After you have entered a condition, the control displays its simplified expression:

Counters

These controls allow you to define conditions on the trigger counter:

The trigger window can be in one of the following three states.
• None: no counter has been started up, thus no condition has been specified

upon the trigger.
• For: assuming that you gave the counter limit the value N, the window

manager adds 1 to the current value of the counter and refreshes the value of
its variables, each time the debug window is triggered. However, when the
counter equals N, the window stops refreshing the values, and it changes to
the Stop state.

• After: assuming that you gave the counter limit the value N, the window
manager resets the counter and adds 1 to its current value each time it is
triggered. The window remains in the Ready state and does not update the
value of its variables until the counter reaches N.

Debugging with Trigger Windows

Introduction
The trigger window tool allows you to select a set of variables and to have their
values displayed and updated synchronously in a pop-up window. Unlike the
Watch window, trigger windows refresh simultaneously all the variables they
contain, every time they are triggered.

Condition ...A GT 100

Trigger For

After

None

events

9MA10256.04 219

Debugging

Opening a Trigger Window from an IL Module
For this example, assume that you have an IL module containing the following
instructions:

You want to know the value of b, d, and k, just before the ST k instruction is
executed.

To do so, move the cursor to line 12:

Then you can click Debug > Add/remove text trigger.

In both cases, a green arrowhead appears next to the line number, and the related
trigger window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place
a trigger at the beginning of a line containing a JMP statement.

Adding a Variable to a Trigger Window from an IL Module
In order to watch the value of a variable, you need to add it to the trigger window.

Select a variable by double-clicking it, and then drag it into the Variables window
that is the lower white box in the pop-up window:

220 9MA10256.04

Debugging

The name of the variable is now displayed in the Symbol column:

The same procedure applies to all the variables you wish to monitor.

Opening a Trigger Window from an FBD Module
For this example, assume that you have an FBD module containing the following
instructions:

You want to know the values of C, D, and K, just before the ST k instruction is
executed.

Provided that you can never place a trigger in a block representing a variable such

as you must select the first available block preceding the selected
variable. In the example of the previous figure, you must move the cursor to
network 3, and click the ADD block.

You can click Debug > Add/remove text trigger.

Cnt: 1610 Triggered

Condition ...

Trigger For

After

None

events

Symbol Value Type
B 0 UINT

Trigger n° 0 at F_CALCFREQSETPERC#2

9MA10256.04 221

Debugging

In both cases, the color of the selected block turns to green, a white circle with a
number inside appears in the middle of the block, and the related trigger window
pops up:

When preprocessing FBD source code, the compiler translates it into IL
instructions. The ADD instruction in network 3 is expanded to:
LD k
ADD 1
ST k

When you add a trigger to an FBD block, you place the trigger before the first
statement of its IL equivalent code.

Adding a Variable to a Trigger Window from an FBD Module
To watch the value of a variable, you need to add it to the trigger window. For
example, you want to monitor the value of variable k of the FBD code:

Click Edit > Watch mode.

The cursor will become as follows: .

Now you can click the block representing the variable you wish to be displayed in
the trigger window.

In the example, click the button block:

222 9MA10256.04

Debugging

A dialog box appears listing all the currently existing instances of debug windows,
and asking you which one is to receive the object you have just clicked:

In order to display the variable k in the trigger window, select its reference in the
Debug windows column, then click OK. The name of the variable is now
displayed in the Symbol column:

The same procedure applies to all the variables you wish to monitor:

Once you have added to the Graphic watch window all the variables you want to

observe, you can click Edit > Insert/Move mode, to let the cursor take back
its original shape.

Debug windows list

OK Cancel

Symbol to add:
k

Debug windows

Oscilloscope
Watch

Graphic trace

Cnt: 1610 Triggered

Condition ...

Trigger For

After

None

events

Symbol Value Type
K 61830 UINT

Trigger n°0 at TRIGGERS#3$0:1

9MA10256.04 223

Debugging

Opening a Trigger Window from an LD Module
For this example, assume that you have an LD module containing the following
instructions:

You can place a trigger on a block such as follows:

In this case, the same rules apply as to insert a trigger in an FBD module on a

contact or a coil .

In this case, follow the SE instructions. Let also assume that you want to know the
value of some variables every time the processor reaches network number 1.

First you must click one of the items making up network number 1. Now you can

click Debug > Add/remove text trigger.

In both cases, the gray area containing the network number turns to green, and a
white circle with the number of the trigger inside appears in the middle of the area
while the related trigger window pops up:

224 9MA10256.04

Debugging

Unlike the other languages supported by Programming, LD does not allow you to
insert a trigger into a single contact or coil, as it lets you select only an entire
network. Thus the variables in the trigger window will be refreshed every time the
processor reaches the beginning of the selected network.

Adding a Variable to a Trigger Window from an LD Module
To watch the value of a variable, you need to add it to the trigger window. For
example, you want to monitor the value of variable b in the LD code:

Click Edit > Watch mode.

The cursor becomes as follows:

Now you can click the item representing the variable you wish to be displayed in
the trigger window.

A dialog box appears listing all the currently existing instances of debug windows,
and asking you which one is to receive the object you have just clicked.

To display variable B in the trigger window, select its reference in the Debug
window column, then click OK.

Cnt: 0

Condition ...

Trigger For

After

None

events

Symbol Value Type

Trigger n°0 at F_CALCFREQSETPERC#2

Stop

Debug windows list

OK Cancel

Symbol to add:
b

Debug windows

Oscilloscope
Watch

Trigger n°0 at TRIGGERS#1$

9MA10256.04 225

Debugging

The name of the variable is now displayed in the Symbol column:

The same procedure applies to all the variables you wish to monitor.

Opening a Trigger Window from an ST Module
For this example, assume that you have an ST module containing the following
instructions:

Let us also assume that you want to know the value of e, d, and f, just before the
instruction
f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then you can click Debug > Add/remove text trigger.

In both cases, a green arrowhead appears next to the line number,

Cnt: 0

Condition ...

Trigger For

After

None

events

Symbol Value Type
B FALSE BOOL

Trigger n°0 at TRIGGERS#1$

Ready

226 9MA10256.04

Debugging

and the related trigger window pops up:

Not all the ST instructions support triggers. For example, it is not possible to place
a trigger on a line containing a terminator such as END_IF, END_FOR, END_
WHILE, and so on.

Adding a Variable to a Trigger Window from an ST Module
In order to watch the value of a variable, you need to add it to the trigger window.
Select a variable, by double-clicking it, and then drag it into the Variables window
that is the lower white box in the pop-up window. The variable name now appears
in the Symbol column:

The same procedure applies to all the variables you wish to monitor.

Removing a Variable from the Trigger Window
If you want to remove a variable from the trigger window, select it by clicking its
name once, then press the Delete key.

Using Controls
Trigger windows controls allow you to supervise the working of this debugging
tool. The main purpose of trigger window controls is to let you define more limiting
conditions so that variables in the Variables window are refreshed when the
processor reaches the trigger location and these conditions are satisfied. If you do
not use controls, variables are refreshed every time the processor reaches the
relative trigger.

Cnt: 0

Condition ...

Trigger For

After

None

events

Symbol Value Type

Trigger n°0 at F_CALCFREQSETPERC#2

Stop

Cnt: 1610 Triggered

Condition ...

Trigger For

After

None

events

Symbol Value Type
F 0 UDINT

Trigger n°0 at TRIGGERS#3$0:1

9MA10256.04 227

Debugging

Enabling controls

When you set a trigger, all the elements in the Control window are disabled:

You cannot access any of the controls until at least one variable is dragged into
the Debug window. When you do triggering automatically starts and the Controls
window changes as follows:

Triggering can be started/stopped with the relevant button:

Fixing the number of refresh

If you want the values to be refreshed the first time the window is triggered, select
None, and press the single step button, otherwise select For and set the
events to 1.

If you want the values to be refreshed the first X times the window is triggered,
select For and set the events to X.

If you want the values to be refreshed after Y times the window is triggered, select
After and set the events to Y.

Trigger and condition settings become the settings when the triggering is (re)
started.

Defining a condition

This control enables you to set a condition on the occurrences of a trigger. By
default, this condition is set to TRUE, and the values in the debug window are
refreshed every time the window manager is triggered.

If you want to put a restriction on the refreshment mechanism, you can specify a

condition by clicking the button

Then a text window appears where you can write the IL code that sets the
condition:

Once you have finished writing the condition code, click the OK button to install it,
or press the Esc key to cancel. If you choose to install it, the values in the debug

Cnt: 0 Stop

Condition ...

Trigger For

After

None

events

Cnt: 0 Stop

Condition ...

Trigger For

After

None

events

OK

Trigger condition

LD a
GT 100

228 9MA10256.04

Debugging

window are refreshed every time the window manager is triggered and the user-
defined condition is true.

A simplified expression of the condition now appears in the control:

To modify it, click the button again.

The Trigger condition window appears, containing the IL code you originally wrote,
which you can now edit.

To completely remove a condition, delete all of the IL code in the window, then
click OK.

The result of the condition code must be of type boolean (TRUE or FALSE),
otherwise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code.
Namely, all variables local to the POU where the trigger was originally inserted are
not valid if they have not been dragged into the debug window. No new variables
can be declared in the condition window.

Closing a Trigger Window and Removing a Trigger
There are a number of actions you can take when you finish a debug session with
a trigger window:

Closing the trigger window:

If you have finished watching a set of variables by using a trigger window, you may
want to close the Debug window, without removing the trigger. If you click the
button in the top right-hand corner, you hide the interface window while the
window manager and the relative trigger keep working.

To resume debugging with a trigger window that you previously hid, you need to
open the Trigger list window, select the record referred to that trigger window,
and click the Open button.

The interface window appears with value of variables and trigger counter updated,
as if it had not been closed.

Removing a trigger:

If you choose this option, you completely remove the code both of the window
manager and of its trigger. Open the Trigger list window, select the record
referred to the trigger window you want to eliminate, and click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or
click the block (if the module is in FBD or LD) where you placed the trigger. Now

click the Add/remove text trigger button in the Debug toolbar.

Removing all the triggers:

Condition ...A GT 100

Trigger list

Open

Remove all

OK

Remove

Type Module Line

G
T
T
T
T

System
RMS
Fast
Init
Slow

-1
-1
14
-1
-1

9MA10256.04 229

Debugging

Alternatively, you can remove all the existing triggers at once, regardless for which

records are selected, by clicking the Remove all triggers button.

Graphic Triggers

Graphic Trigger Window

Description
The graphic trigger window tool allows you to select a set of variables, to have
them sampled synchronously, and to have their curve displayed in a special pop-
up window.

Sampling of the dragged-in variables occurs every time the processor reaches the
position (that is, the instruction - if IL, ST - or the block - if FBD, LD) where you
placed the trigger.

Pre-Conditions to Open a Graphic Trigger Window
Memory availability

If the available free memory space in the application code sector is insufficient, an
error message to that effect is display. You must then remove some objects from
memory to make the feature available.

Graphic Trigger Window Interface
Setting a graphic trigger causes a pop-up window to appear, which is called the
Interface window. This is the main interface for accessing the debugging
functions that the graphic trigger window makes available. It consists of several
elements, as presented below:

` Stop0Cnt:

Track Um Min value Max value Cur value Value/Div Description

-5000 0

F2C_PROBE_CONVERTER#5

1 2

4 3

230 9MA10256.04

Debugging

1. Caption bar

2. Controls bar

3. Chart area

4. Variables window

The caption bar

The Caption bar at the top of the pop-up window shows information on the
location of the trigger which causes the variables listed in the Variables window to
be sampled.

The text in the caption has the following format:
ModuleName#Location

Where

ModuleName Name of program, function, or function block where the trigger was placed.

Location Exact location of the trigger within module ModuleName.

IfModuleName is in IL, ST, Location has the format:

N1

Otherwise, ifModuleName is in FBD, LD, it becomes:

N2$BT:BID

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, and so on)

BID = block identifier

The Controls bar

The Controls bar allows you to control the working of the graphic trigger window. A
detailed description of the function of each control is given in the Graphic trigger
window controls section. Refer to Graphic Trigger Window Controls description,
page 232.

The Chart area

The Chart area includes six items:
• Plot: area containing the plot of the curve of the dragged-in variables.
• Samples to acquire: number of samples to be collected by the graphic trigger

window manager.
• Horizontal cursor: cursor identifying a horizontal line. The value of each

variable at the intersection with this line is reported in the column horz
cursor.

• Blue cursor: cursor identifying a vertical line. The value of each variable at the
intersection with this line is reported in the column left cursor.

• Red cursor: cursor identifying a vertical line. The value of each variable at the
intersection with this line is reported in the column left cursor.

• Scroll bar: if the scale of the x-axis is too large to display all the samples in the
Plot area, the scroll bar allows you to slide back and forth along the horizontal
axis.

The Variables window

This lower section of the Debug window is a table consisting of a row for each
variable that you have dragged in.

9MA10256.04 231

Debugging

Graphic Trigger Window: Variables Window
To watch a variable, you need to copy it to the lower section of the Debug window:

This lower section of the Debug window is a table consisting of a row for each
variable that you dragged in. Each row has several fields, as presented in the
following table:

Field Description

Track Name of the variable.

Um Unit of measurement.

Min value Minimum value in the record set.

Max value Maximum value in the record set.

Cur value Last sampled value of the variable.

Value/Div How many engineering units are represented by a unit of the y-axis (that is, the
space between two ticks on the vertical axis).

V blue curs Value of the variable at the intersection with the line identified by the vertical blue
cursor.

V red curs Value of the variable at the intersection with the line identified by the vertical red
cursor.

H blue curs Value of the variable at the intersection with the line identified by the horizontal
blue cursor.

H red curs Value of the variable at the intersection with the line identified by the horizontal
red cursor.

You can drag into the graphic trigger window only variables local to the module
where you placed the relative trigger, or global variables, or parameters. You
cannot drag variables declared in another program, function, or function block.

Sampling of Variables
The value of the variables is sampled every time the graphic trigger window
manager is triggered, that is every time the processor executes the instruction
marked by the green arrowhead. However, you can set controls in order to have
variables sampled when triggers also satisfy further limiting conditions that you
define.

The value of the variables in the column Track is read from memory just before
the marked instruction and immediately after the previous instruction.

Graphic Trigger Window Controls
Controls allow you to specify in detail when Programming samples the variables
added to the Variables window.

Graphic trigger window controls act on the behavior of the window regardless for
the type of the module (IL, ST, FBD, or LD) where the related trigger has been
inserted.

Window controls are made accessible to you through the Controls bar of the
debug window:

Track Um Min value Max value Cur value Value/Div

PIDFEEDBACK -10.710 10.710 -7.685 2.67756

PIDOUTPUT -11.963 11.964 -11.952 2.99089

232 9MA10256.04

Debugging

Button Command Description

Start graphic trace When you click this button, the acquisition starts. If acquisition is running and you click the
button again, you stop the sample collection process, and you reset all the data you have
acquired so far.

Show measure bars The two cursors (red cursor, blue cursor) may be seen and moved along their axis as long
as this button is clicked. Click the button again if you want to hide all the cursors.

Show samples This control is used to put in evidence the exact point in which the variables are triggered
at each sample.

Vertical split When clicked, this control splits the y-axis into as many segments as the dragged-in
variables, so that the diagram of each variable is drawn in a separate band.

Show all values It is used to fill in the graph window all the values sampled for the selected variables in the
current record set.

Horizontal zoom +

and

Horizontal zoom -

Zooming in is an operation that makes the curves in the Chart area appear larger on the
screen, so that greater detail may be viewed. Zooming out is an operation that makes the
curves appear smaller on the screen so that it may be viewed in its entirety.

Horizontal zoom acts only on the horizontal axis.

Horizontal show all This control is used to horizontally center record set samples. So first sample is placed on
the left margin, and last is placed on the right margin of the graphic window.

Vertical zoom +

and

Vertical zoom -

Zooming in is an operation that makes the curves in the Chart area appear larger on the
screen so that greater detail may be viewed. Zooming out is an operation that makes the
curves appear smaller on the screen so that it may be viewed in its entirety.

Vertical Zoom acts only on the vertical axis.

Vertical show all This control is used to vertically center record set samples. So max value sample is placed
near top margin and low value sample is placed on the bottom margin of the graphic
window.

Stop acquisition This control is used to stop the acquisition.

Pause acquisition Click this button to suspend the acquisition.

Re-start acquisition Click this button to restart the acquisition.

Graph properties Clicking this button causes a tabbed dialog box to appear, which allows you to set general
user options affecting the action of the graphic trigger window. For more information, refer
to Graphic Trigger Window Properties, page 234.

Print chart Click this button to print both the Chart area and the Variables window.

Save chart Click this button to save the chart.

Trigger counter

This read-only control displays two numbers with the following format: Cnt: X/Y.
• X indicates how many times the debug window manager has been triggered

since the graphic trigger was installed.
• Y represents the number of samples the graphic window has to collect before

stopping data acquisition and drawing the curves.
Trigger state

This read-only control displays the state of the Debug window. It can assume the
following values:

No sample(s) taken, as the trigger has not occurred during the current task
execution.

Sample(s) collected, as the trigger has occurred during the current task
execution.

Ready

Triggered

9MA10256.04 233

Debugging

The trigger counter indicates that a number of samples has been collected
satisfying the user request or memory constraints, thus the acquisition
process is stopped.

Communication with target interrupted; the state of the trigger window cannot
be determined.

Graphic Trigger Window Properties
In order to open the properties window, you must click the Graph properties
button in the Controls bar. The Synchronous oscilloscope settings dialog box
appears.

General

Control

Control Description

Show grid Select this control to display a grid in the Chart area background.

Show time bar The scroll bar at the bottom of the Chart area is available as long as this box
is selected.

Show tracks list The Variables window is displayed as long as this box is selected, otherwise
the Chart area extends to the bottom of the graphic trigger window.

Values

Control Description

Horizontal scale Number of samples per unit of the x-axis. The unit x-axis is the space
between two vertical lines of the background grid.

Buffer size Number of samples to acquire. When you open the Synchronous
oscilloscope settings window, after having previously dragged-in all the
variables you want to watch, a default number appears in this field,
representing the maximum number of samples you can collect for each
variable.

User-defined condition

If you define a condition by using this control, the sampling process does not start
until that condition is satisfied. Unlike trigger windows, once data acquisition
begins, samples are taken every time the window manager is triggered,
regardless whether the condition continues to be true.

Stop

Error

Show tracks list

Show time bar

Show grid

65535

500

Condition

Buffer size

Horizontal scale Samples/div

Samples

Synchronous oscilloscope settings

Tracks list
Name Unit Value/div Offset Hide

1 0

OK Apply Cancel

...

(max. 65535)

F2C_PROBE_CONVERTER

234 9MA10256.04

Debugging

After you enter a condition, the control displays its simplified expression:

Tracks list

This section allows you to define some graphic properties of the plot of each
variable. To select a variable, click its name in the Name column:

Control Description

Unit Unit of measurement, displayed in the table of the Variables window.

Value/div Values per unit of the y-axis. The unit y-axis is the space between two
horizontal lines of the background grid.

Offset Set a value to apply an offset value on the graph.

Hide Select this flag to hide the selected track on the graph.

Click Apply to make your changes effective, or click OK to apply your changes
and to close the Synchronous oscilloscope settings window.

Debugging with the Graphic Trigger Window

Description
The graphic trigger window tool allows you to select a set of variables and to have
them sampled synchronously and plotted in a special pop-up window.

Opening the Graphic Trigger Window from an IL Module
For this example, assume that you have an IL module containing the following
instructions:

Further, assume that you want to know the value of b, d, and k, just before the ST
k instruction is executed. To do so, move the cursor to line 12:

Then click Debug > Add/remove graphic trigger.

Condition ...A GT 100

9MA10256.04 235

Debugging

A green arrowhead appears next to the line number, and the graphic trigger
window pops up:

Not all the IL instructions support triggers. For example, it is not possible to place
a trigger at the beginning of a line containing a JMP statement.

Adding a Variable to the Graphic Trigger Window from an IL Module
In order to get the diagram of a variable plotted, you need to add it to the graphic
trigger window. Select a variable, by double-clicking it, and then drag it into the
Variables section. The variable now appears in the Track column:

The same procedure applies to all the variables you wish to monitor.

Once the first variable is dropped into a graphic trace, the Graphic properties
window is automatically displayed and allows you to setup sampling and
visualization properties.

236 9MA10256.04

Debugging

Opening the Graphic Trigger Window from an FBD Module
For this example, assume that you have an FBD module containing the following
instructions:

Further, assume that you want to know the values of c, d, and k, just before the ST
k instruction is executed.

You can never place a trigger in a block representing a variable such as .
You must select the first available block preceding the selected variable. In the
example of the previous figure, you must move the cursor to network 3, and click
the ADD block.

Now click Debug > Add/remove graphic trigger.

This causes the color of the selected block to turn to green, a white circle with the
trigger ID number inside to appear in the middle of the block,

9MA10256.04 237

Debugging

and the related trigger window to pop up:

When preprocessing the FBD source code, the compiler translates it into IL
instructions. The ADD instruction in network 3 is expanded to:
LD k
ADD c
ST k

When you add a trigger to an FBD block, you place the trigger before the first
statement of its IL equivalent code.

Adding a Variable to the Graphic Trigger Window from an FBD Module
To watch a variable, you need to add it to the trigger window. As stated, assume
that you want to see the plot of the variable k of the FBD code.

Click Edit > Watch mode.

The cursor becomes as follows:

Now you can click the block representing the variable you wish to be displayed in
the graphic trigger window.

In this example, click the button block:

Track Um Min value Max value Cur value Value/Div Description

-5000 0

Cnt: 0 Stop

SR_DISPLAY#14

238 9MA10256.04

Debugging

A dialog box appears listing all the currently existing instances of debug windows,
and asking you which one is to receive the object you have just clicked:

In order to plot the curve of variable k, select Graphic Trace in the Debug
windows column, then click OK. The name of the variable is now displayed in the
Track column:

The same procedure applies to all the variables you wish to monitor.

Once you have added to the Graphic watch window all the variables you want to

monitor, you can click Edit > Insert/Move mode in order to restore the
original cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties
window is automatically displayed and allows you to setup sampling and
visualization properties.

Debug windows list

OK Cancel

Symbol to add:
k

Debug windows

Oscilloscope
Watch

Graphic trace

9MA10256.04 239

Debugging

Opening the Graphic Trigger Window from an LD Module
For this example, assume that you have an LD module containing the following
instructions:

You can place a trigger on a block such as follows:

In this case, the same rules apply as to insert the graphic trigger in an FBD
module.

Further, assume that you want to know the value of some variables every time the
processor reaches network number 1.

Click one of the items making up network number 1, then click Debug > Add/
remove graphic trigger

This causes the gray area containing the network number to turn to green, a white
circle with a number inside to appear in the middle of the area,

240 9MA10256.04

Debugging

and the graphic trigger window to pop up.

NOTE: Unlike the other languages supported by Programming, LD does not
allow you to insert a trigger before a single contact or coil, as it lets you select
only an entire network. Thus the variables in the Graphic trigger window will
be sampled every time the processor reaches the beginning of the selected
network.

Adding a Variable to the Graphic Trigger Window from an LD Module
In order to watch the diagram of a variable, you must add it to the Graphic trigger
window. In this example, assume that you want to see the plot of the variable b in
the LD code.

Click Edit > Watch mode.

The cursor becomes as follows: .

Now you can click the item representing the variable you wish to be displayed in
the Graphic trigger window.

A dialog box appears listing all the currently existing instances of debug windows,
and asking you which one is to receive the object you have just clicked.

Track Um Min value Max value Cur value Value/Div Description

-5000 0

Cnt: 0 Stop

SR_DISPLAY#14

9MA10256.04 241

Debugging

In order to plot the curve of variable b, select Graphic trace in the Debug
windows column, then click OK. The name of the variable is now displayed in the
Track column:

The same procedure applies to all the variables you wish to monitor.

Once you have added to the Graphic watch window all the variables you want to

monitor, you can click Edit > Insert/Move mode to restore the original shape
of the cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties
window is automatically displayed and allows you to setup sampling and
visualization properties.

Opening the Graphic Trigger Window from an ST Module
For this example, assume that you have an ST module containing the following
instructions:

This example assumes that you want to know the value of e, d, and f, just before
the instruction
f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then click Debug > Add/remove graphic trigger.

A green arrowhead appears next to the line number, and the Graphic trigger
window pops up:

Debug windows list

OK Cancel

Symbol to add:
b

Debug windows

Oscilloscope
Watch

Graphic trace

242 9MA10256.04

Debugging

Not all the ST instructions support triggers. For example, it is not possible to place
a trigger on a line containing a terminator such as END_IF, END_FOR, END_
WHILE, and so on.

Adding a Variable to the Graphic Trigger Window from an ST Module
In order to get the diagram of a variable plotted, you need to add it to the Graphic
trigger window.

Select a variable, by double-clicking it, and then drag it into the Variables window
that is the lower white box in the pop-up window:

Track Um Min value Max value Cur value Value/Div Description

-5000 0

Cnt: 0 Stop

SR_DISPLAY#14

9MA10256.04 243

Debugging

The variable now appears in the Track column:

The same procedure applies to all the variables you wish to monitor.

Once the first variable is dropped into a graphic trace, the Graphic properties
window is automatically displayed and allows you to setup sampling and
visualization properties:

Removing a Variable from the Graphic Trigger Window
If you want to remove a variable from the Graphic trigger window, select it by
clicking its name once, then press the Delete key.

Track Um Min value Max value Cur value Value/Div Description

0 0

Cnt: 0/6553 Stop

SR_DISPLAY#14

-5

-4

-3

-2

-1

1

2

3

4

5
samples/div : 500.00

F ... 1.80e+3 ... 1

Show tracks list

Show time bar

Show grid

65535

500

Condition

Buffer size

Horizontal scale Samples/div

Samples

Synchronous oscilloscope settings

Tracks list
Name Unit Value/div Offset Hide

1 0

OK Apply Cancel

...

(max. 65535)

F

244 9MA10256.04

Debugging

Using Controls
Graphic trigger window controls allow you to supervise the working of this
debugging tool and to get more information on the application.

Enabling controls

When you set a trigger, all the elements in the Control bar are enabled. You can

start data acquisition by clicking the Start graphic trace button.

If you defined a user condition, which is currently false, data acquisition does not
start.

On the contrary, once the condition becomes true, data acquisition starts and

continues until the Start graphic trace button is released, regardless for the
condition being or not still true.

If you release the Start graphic trace button before all the required samples
have been acquired, the acquisition process stops and all the collected data get
lost.

Defining a condition

This control enables you to set a condition on when to start acquisition. By default,
this condition is set to true, and acquisition begins as soon as you click the
Enable/Disable acquisition button. From that moment on, the value of the
variables in the Debug window is sampled every time the trigger occurs.

In order to specify a condition, open the Condition tab of the Options dialog box,

then click the relevant button:

A text window pops up, where you can write the IL code that sets the condition:

Once you have finished writing the condition code, click OK to install it, or press

the Esc key to cancel. The collection of samples will not start until the Start
graphic trace button is clicked and the user-defined condition is true. A simplified
expression of the condition now appears in the control:

To modify it, click again the browser button:

The text window appears, containing the text you originally wrote, which you can
now edit.

To remove a user-defined condition, click again the button, delete the whole IL
code in the text window, then click the OK button.

The result of the condition code must be of type boolean (TRUE or FALSE),
otherwise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code.
Namely, all variables local to the module where the trigger was originally inserted

OK

Trigger condition

LD a
GT 100

Condition ...A GT 100

9MA10256.04 245

Debugging

are out of scope if they have not been dragged into the Debug window. Also, no
new variables can be declared in the condition window.

Setting the scale of axes
• x-axis

When acquisition is completed, Programming plots the curve of the dragged-in
variables adjusting the x-axis so that all the data fit in the Chart window. If you
want to apply a different scale, open the General tab of the Graph properties
dialog box, type a number in the horizontal scale edit box, then confirm by clicking
Apply.

• y-axis
You can change the scale of the plot of each variable through the Tracks list tab
of the Graph properties dialog box. Otherwise, if you do not need to specify
exactly a scale, you can use the Zoom In and Zoom Out controls.

Closing the Graphic Trigger Window and Removing the Trigger
At the end of a debug session with the graphic trigger window, you can choose
between the following options:

• Closing the graphic trigger window:
If you have finished plotting the diagram of a set of variables by using the
Graphic trigger window, you may want to close the Debug window without
removing the trigger. If you click the button in the top right-hand corner, you
hide the Interface window while the window manager and the relative trigger
keep working.
To restore the Graphic trigger window that you previously hid:
◦ Open the Trigger list window;
◦ Select the record (having type G);
◦ Click the Open button.
The Interface window appears with the trigger counter properly updated, as if
it had never been closed.

• Removing the trigger:
If you choose this option, you completely remove the code both of the window
manager and of its trigger:
◦ Open the Trigger list window;
◦ Select the record (having type G);
◦ Click the Remove button.
Alternatively, you can move the cursor to the line (if the module is in IL), or
click the block (if the module is in FBD) where you placed the trigger. Now
click the Graphic trace button in the Debug toolbar.

• Removing all the triggers:
Alternatively, you can remove all the existing triggers at once, regardless for

which records are selected, by clicking the Remove all triggers button.

246 9MA10256.04

Debugging

Language Reference
What’s in This Chapter

Common Elements.. 247
Instruction List (IL)... 271
Function Block Diagram (FBD) ... 274
Ladder Diagram (LD) ... 278
Structured Text (ST) .. 280
IFDEF Statement to Exclude a Portion of Code.. 287
Sequential Function Chart (SFC) .. 289
FREE Studio Plus Language Extensions... 299

Description
FREE Studio Plus languages are IEC 61131-3 standard-compliant:

• Common elements
• Instruction list (IL)
• Function block diagram (FBD)
• Ladder diagram (LD)
• Structured text (ST)
• Sequential Function Chart (SFC)

Moreover, FREE Studio Plus implements some extensions:
• Pointers
• Macros

Common Elements

Overview

Description
Common elements are textual and graphic elements shared by all the
programmable controller programming languages specified by IEC 61131-3
standard.

NOTE: The definition and editing of most of the common elements (variables,
structured elements, function blocks definitions, and so on) are managed by
FREE Studio Plus through specific editors, forms, and tables. FREE Studio
Plus does not allow you to edit directly the source code related to these
common elements.
NOTE: The following information was derived directly from the copyrighted
IEC standards.

Basic Elements

Character Set
Textual documents and textual elements of graphic languages are written by using
the standard ASCII character set.

9MA10256.04 247

Language Reference

Comments
User comments are delimited at the beginning and end by the special character
combinations “(*” and “*)”, respectively. Comments are allowed anywhere in the
program, and they have no syntactic or semantic significance in any of the
languages defined in this standard.

The use of nested comments, for example (* (* NESTED *) *), is treated as an
error.

Elementary Data Types

Description
A number of elementary (pre-defined) data types is made available by FREE
Studio Plus;

Elementary data types, keyword for each data type, number of bits per data
element, and range of values for each elementary data type are presented in the
following table.

Keyword Data type Bits Range

BOOL Boolean (1) 0…1

SINT Short integer 8 -128…127

USINT Unsigned short integer 8 0…255

INT Integer 16 -32768…32767

UINT Unsigned integer 16 0…65536

DINT Double integer 32 -231…231-1

UDINT Unsigned long integer 32 0…232

BYTE Bit string of length 8 8 -

WORD Bit string of length 16 16 -

DWORD Bit string of length 32 32 -

REAL Real number 32 -3.40E+38…+3.40E+38

LREAL Long real number 64 -1.7E+308…+1.7E+308

STRING String of characters encoded
with UTF-8

- Characters are delimited by single
quotes (‘abc’)

WSTRING String of characters encoded
with UTF-16

- Characters are delimited by double
quotes (“abc”)

DATE Date expressed in seconds
represented with format YYYY-
MM-DD

32 1970–01–01…2038–01-19

LDATE Date expressed in
nanoseconds represented with
format YYYY-MM-DD

64 1970–01–01…2262–04-11

TIME Time expressed in milliseconds
represented with format dd_
hh_mm_ss_ms

32 -24d_20h_31m_23s_648ms…
+24d_20h_31m_23s_647ms

LTIME Time expressed in
nanoseconds represented with
format dd_hh_mm_ss_ms_us_
ns

64 -106751d_23h_47m_16s_854ms_
775us_808ns…+106751d_23h_
47m_16s_854ms_775us_807ns

DATE_
AND_TIME

Date expressed in seconds
represented with format YYYY-
MM-DD-hh:mm:-ss

32 1970–01–01–00:00:00…2038–01-
19–03:14:07

LDATE_
AND_TIME

Date expressed in
nanoseconds represented with
format YYYY-MM-DD-hh:mm:
ss.us

64 1970–01–01–00:00:00…2262–04-
11–23:47:16.854

248 9MA10256.04

Language Reference

Keyword Data type Bits Range

TIME_OF_
DAY

Time of day expressed in
milliseconds represented with
format hh:mm:ss.ms

32 00:00:00…23:59:59.999

lTIME_OF_
DAY

Time of day expressed in
nanoseconds represented with
format hh:mm:ss.ns

64 00:00:00…23:59:59.999999999

@ANY_
TYPE

Pointer to a variable of any
type (NOT IEC standard)

32/64 Refer to Pointers, page 299.

PVOID Pointer to a generic variable,
without type specified (NOT
IEC standard)

32/64 Refer to Pointers, page 299.

(1) The implementation of the BOOL data type depends on the processor of the target device, for
example, it is 1 bit long for devices that have a bit-addressable area.

Derived Data Types

Description
Derived data types can be declared using the TYPE...END_TYPE construct. They
can be used in variable declarations, in addition to the elementary data types.

Both single-element variables and elements of a multi-element variable, which are
declared to be of derived data types, can be used anywhere where a variable of its
parent type can be used.

Typedefs
The purpose of typedefs is to assign alternative names to existing types. There
are not any differences between a typedef and its parent type, except the name.

Typedefs can be declared using the following syntax:
TYPE

<enumerated data type name> : <parent type name>;
END_TYPE

For example, consider the following declaration, mapping the name LONGWORD
to the IEC 61131-3 standard type DWORD:
TYPE

LONGWORD : DWORD;
END_TYPE

Enumerated Data Types
An enumerated data type declaration specifies that the value of any data element
of that type can only be one of the values given in the associated list of identifiers.
The enumeration list defines an ordered set of enumerated values, starting with
the first identifier of the list, and ending with the last.

Enumerated data types can be declared using the following syntax:
TYPE

<enumerated data type name> : (<enumeration list>);
END_TYPE

For example, consider the following declaration of two enumerated data types.
When no explicit value is given to an identifier in the enumeration list, its value
equals the value assigned to the previous identifier augmented by one.
TYPE

enum1: (
val1, (* the value of val1 is 0 *)
val2, (* the value of val2 is 1 *)
val3 (* the value of val3 is 2 *)

9MA10256.04 249

Language Reference

);
enum2: (

k := -11,
i := 0,
j, (* the value of j is (i + 1) = 1 *)
l := 5

);
END_TYPE

Different enumerated data types may use the same identifiers for enumerated
values. To be uniquely identified when used in a particular context, enumerated
literals may be qualified by a prefix consisting of their associated data type name
and the # sign.

Subranges
A subrange declaration specifies that the value of any data element of that type is
restricted between and including the specified upper and lower limits.

Subranges can be declared using the following syntax:
TYPE

<subrange name> : <parent type name> (<lower limit>..
<upper limit>);
END_TYPE

For example, consider the following declaration:
TYPE

int_0_to_100 : INT (0..100);
END_TYPE

Structures
A STRUCT declaration specifies that data elements of that type shall contain
subelements of specified types which can be accessed by the specified names.

Structures can be declared using the following syntax:
TYPE

<structured type name> : STRUCT
<declaration of structurestructure elements>

END_STRUCT;
END_TYPE

For example, consider the following declaration:
TYPE

structure1 : STRUCT
elem1 : USINT;
elem2 : USINT;
elem3 : INT;
elem3 : REAL;

END_STRUCT;
END_TYPE

Literals

Numeric Literals
External representation of data in the various programmable controller
programming languages consists of numeric literals.

There are two classes of numeric literals: integer literals and real literals. A
numeric literal is defined as a decimal number or a based number.

Decimal literals are represented in conventional decimal notation. Real literals are
distinguished by the presence of a decimal point. An exponent indicates the

250 9MA10256.04

Language Reference

integer power of ten by which the preceding number needs to be multiplied to
obtain the represented value. Decimal literals and their exponents can contain a
preceding sign (+ or -).

Integer literals can also be represented in base 2, 8 or 16. The base is in decimal
notation. For base 16, an extended set of digits consisting of letters A through F is
used, with the conventional significance of decimal 10 through 15, respectively.
Other than base 10 numbers do not contain any leading sign (+ or -).

Boolean data are represented by the keywords FALSE and TRUE.

Numerical literal features and examples are presented in the following table:

Feature description Examples

Integer literals -12

0

123

+986

Real literals -12.0

0.0

0.4560

Real literals with exponents -1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6

1.234E6 or 1.234e6

Base 2 literals 2#11111111 (256 decimal)

2#11100000 (240 decimal)

Base 8 literals 8#377 (256 decimal)

8#340 (240 decimal)

Base 16 literals 16#FF or 16#ff (256 decimal)

16#E0 or 16#e0 (240 decimal)

Boolean FALSE and TRUE FALSE

TRUE

For more details, refer to Two-character strings, page 252.

Character String Literals
A character string literal is a sequence of zero or more characters prefixed and
terminated by the single quote character (').

Example Explanation

'' Empty string (length zero)

'A' String of length one containing the single character A

' ' String of length one containing the space character

'$'' String of length one containing the single quote character (1)

'”' String of length one containing the double quote character

'RL' String of length two containing CR and LF characters (1)

'$0A' String of length one containing the LF character (2)

(1) For more details, refer to Two-character strings, page 252.

(2) The three-character combination of the dollar sign ($) followed by two hexadecimal digits shall
be interpreted as the hexadecimal representation of the ASCII eight-bit character code.

9MA10256.04 251

Language Reference

Two-character Combinations
Two-character combinations beginning with the dollar sign shall be interpreted as
presented in the following table when they occur in character strings:

Combination Interpretation when displayed

$$ Dollar sign

$' Single quote

$L or $1 Line feed

$N or $n Newline

$P or $p Form feed (page)

$R or $r Carriage return

$T or $t Tab

Variables

Foreword
Variables provide a means of identifying data objects whose contents may
change, for example, data associated with the inputs, outputs, or memory of the
programmable controller. A variable must be declared to be one of the elementary
types. Variables can be represented symbolically, or alternatively in a manner
which directly represents the association of the data element with physical or
logical locations in the programmable controller’s input, output, or memory
structure.

Each program organization unit (POU) (program, function, or function block)
contains at its beginning at least one declaration part. This declaration part
consists of one or more structuring elements, which specify the types (and, if
necessary, the physical or logical location) of the variables used in the
organization unit. This declaration part has the textual form of one of the keywords
VAR, VAR_INPUT, or VAR_OUTPUT as defined in the keywords section, followed
in the case of VAR by zero or one occurrence of the qualifiers RETAIN, NON_
RETAIN or the qualifier CONSTANT, and in the case of VAR_INPUT or VAR_
OUTPUT by zero or one occurrence of the qualifier RETAIN or NON_RETAIN,
followed by one or more declarations separated by semicolons and terminated by
the keyword END_VAR. A declaration may also specify an initialization for the
declared variable when a programmable controller supports the declaration by the
user of initial values for variables.

Structuring Element
The declaration of a variable must be performed within the following program
structuring element:
KEYWORD [RETAIN] [CONSTANT]

Declaration 1
Declaration 2
...
Declaration N

END_VAR

Keywords and Scope

Keyword Variable usage

VAR Internal to organization unit.

VAR_INPUT Externally supplied.

252 9MA10256.04

Language Reference

Keyword Variable usage

VAR_OUTPUT Supplied by organization unit to external entities.

VAR_IN_OUT Supplied by external entities, can be modified within organization unit.

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL, can be modified within
organization unit.

VAR_GLOBAL Global variable declaration.

The scope (range of validity) of the declarations contained in structuring elements
is local to the program organization unit (POU) in which the declaration part is
contained. That is, the declared variables are accessible to other program
organization units except by explicit argument passing via variables which have
been declared as inputs or outputs of those units. The one exception to this rule is
the case of variables which have been declared to be global.

Global variables are accessible to programs in any case, or via a VAR_
EXTERNAL declaration to function blocks. The type of a variable declared in a
VAR_EXTERNAL must agree with the type declared in the VAR_GLOBAL block.

To give access to these variables to all types of POU, without using any keyword,
you must enable this option in the Code generation tab of the Project Options
window, page 102.

An error is detected if:
• Any POU attempts to modify the value of a variable that has been declared

with the CONSTANT qualifier;
• A variable declared as VAR_GLOBAL CONSTANT in a configuration element

or POU (the “containing element”) is used in a VAR_EXTERNAL declaration
(without the CONSTANT qualifier) of any element contained within the
containing element.

Qualifiers

Qualifier Description

CONST The attribute CONST indicates that the variables within the structuring
elements are constants, that is, they have a constant value, which cannot be
modified once the PLC project has been compiled.

RETAIN The attribute RETAIN indicates that the variables within the structuring
elements are retentive, that is, they keep their value even after the target
device is reset or switched off.

Single-Element Variables and Arrays
A single-element variable represents a single data element of either one of the
elementary types or one of the derived data types.

An array is a collection of data elements of the same data type; in order to access
a single element of the array, a subscript (or index) enclosed in square brackets
has to be used. Subscripts can be either integer literals or single-element
variables.

To represent data matrices, arrays can be multi-dimensional; in this case, a
composite subscript is required, one index per dimension, separated by commas.
The maximum number of dimensions allowed in the definition of an array is three.

Declaration Syntax
Variables must be declared within structuring elements, using the following syntax:
VarName1 : Typename1 [:= InitialVal1];
VarName2 AT Location2 : Typename2 [:= InitialVal2];
VarName3 : ARRAY [0..N] OF Typename3;

9MA10256.04 253

Language Reference

Where:

Keyword Description

VarNameX Variable identifier, consisting of a string of alphanumeric characters, of length 1
or more. It is used for symbolic representation of variables.

TypenameX Data type of the variable, selected from elementary data types.

InitialValX The value the variable assumes after reset of the target.

LocationX Refer to Location description, page 254.

N Index of the last element, the array having length
N + 1.

Location
Variables can be represented symbolically, that is, accessed through their
identifier, or alternatively in a manner which directly represents the association of
the data element with physical or logical locations in the input, output, or memory
structure of the programmable controller.

Direct representation of a single-element variable is provided by a special symbol
formed by the concatenation of the percent sign “%”, a location prefix and a size
prefix, and one or two unsigned integers, separated by periods (.).

%location.size.index.index

1) location

The location prefix may be one of the following:

Location prefix Description

I Input location

Q Output location

M Memory location

2) size

The size prefix may be one of the following:

Size prefix Description

X Single bit size

B Byte (8 bits) size

W Word (16 bits) size

D Double word (32 bits) size

3) index.index

This sequence of unsigned integers, separated by dots, specifies the position of
the variable in the area specified by the location prefix.

Example:

Direct representation Description

%MW4.6 Word starting from the first byte of the seventh element of memory
data block 4.

%IX0.4 First bit of the first byte of the fifth element of input set 0.

The absolute position depends on the size of the data block elements, not on the
size prefix.%MW4.6 and%MD4.6 begin from the same byte in memory, but the
former points to an area which is 16 bits shorter than the latter.

254 9MA10256.04

Language Reference

For advanced users only: if the index consists of one integer only (no dots), then it
loses any reference to data blocks, and it points directly to the byte in memory
having the index value as its absolute address.

Direct representation Description

%MW4.6 Word starting from the first byte of the seventh element of datablock
4 in memory.

%MW4 Word starting from byte 4 of memory.

Example:
VAR [RETAIN] [CONSTANT]

XQuote : DINT;
Enabling : BOOL := FALSE;
TorqueCurrent AT %MW4.32 : INT;
Counters : ARRAY [0 .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]

END_VAR

• Variable XQuote is 32 bits long, and it is automatically allocated by the FREE
Studio Plus compiler.

• Variable Enabling is initialized to FALSE after target reset.
• Variable TorqueCurrent is allocated in the memory area of the target device,

and it takes 16 bits starting from the first byte of the 33rd element of data
block 4.

• Variable Counters is an array of 10 independent variables of type unsigned
integer.

Declaring Variables in FREE Studio Plus
Whatever the PLC language you are using, FREE Studio Plus allows you to
disregard the previous syntax, as it supplies the local variables editor, the global
variables editor, and the parameters editor, which provide an interface to declare
all kinds of variables.

Program Organization Units

Description
Program organization units (POU) are functions, function blocks, and programs.
Program organization units can be delivered by the manufacturer, or programmed
by you through the means defined in this part of the standard.

Program organization units are not recursive; that is, the invocation of a program
organization unit cannot cause the invocation of the same program organization
unit.

Functions
Introduction

For the purposes of programmable controller programming languages, a function
is defined as a program organization unit (POU) which, when executed, yields
exactly one data element, which is considered to be the function result.

Functions contain no internal state information, that is, invocation of a function
with the same arguments (input variables VAR_INPUT and in-out variables VAR_
IN_OUT) always yields the same values (output variables VAR_OUTPUT, in-out
variables VAR_IN_OUT, and function result).

Declaration syntax

9MA10256.04 255

Language Reference

The declaration of a function must be performed as follows:
FUNCTION FunctionName : RetDataType

VAR_INPUT
declaration of input variables (see the relevant

section)
END_VAR
VAR_EXTERNAL

declaration of external variables
END_VAR
VAR

declaration of local variables (see the relevant
section)

END_VAR
Function body

END_FUNCTION

Keyword Description

FunctionName Name of the function being declared.

RetDataType Data type of the value to be returned by the function.

VAR_EXTERNAL . .
END_VAR

A function can access global variables only if they are listed in a VAR_
EXTERNAL structuring element. Variables passed to the FB via a VAR_
EXTERNAL construct can be modified from within the FB.

Function body Specifies the operations to be performed upon the input variables in order to
assign values dependent on the function’s semantics to a variable with the
same name as the function, which represents the function result. It can be
written in any of the languages supported by FREE Studio Plus.

Declaring functions

Whatever the PLC language you are using, FREE Studio Plus allows you to
disregard the previous syntax, as it supplies a friendly interface for using
functions.

Function Blocks
Introduction

For the purposes of programmable controller programming languages, a function
block is a program organization unit which, when executed, yields one or more
values. Multiple, named instances (copies) of a function block can be created.
Each instance has an associated identifier (the instance name), and a data
structure containing its input, output, and internal variables. All the values of the
output variables and the necessary internal variables of this data structure persist
from one execution of the function block to the next. Invocation of a function block
with the same arguments (input variables) does not always yield the same output
values.

Only the input and output variables are accessible outside of an instance of a
function block, that is, the function block’s internal variables are hidden from the
user of the function block.

In order to execute its operations, a function block needs to be started by another
POU. Invocation depends on the specific language of the module calling the
function block.

The scope of an instance of a function block is local to the program organization
unit in which it is instantiated.

Declaration syntax

The declaration of a function must be performed as follows:
FUNCTION_BLOCK FunctionBlockName

VAR_INPUT
declaration of input variables (see the relevant

section)
END_VAR

256 9MA10256.04

Language Reference

VAR_OUTPUT
declaration of output variables

END_VAR
VAR_EXTERNAL

declaration of external variables
END_VAR
VAR

declaration of local variables
END_VAR
Function block body

END_FUNCTION_BLOCK

Keyword Description

FunctionBlockName Name of the function block being declared (note: name of the
template, not of its instances).

VAR_EXTERNAL .. END_VAR A function block can access global variables only if they are listed
in a VAR_EXTERNAL structuring element. Variables passed to
the FB via a VAR_EXTERNAL construct can be modified from
within the FB.

Function block body Specifies the operations to be performed upon the input variables
in order to assign values to the output variables - dependent on
the function block’s semantics and on the value of the internal
variables. It can be written in any of the languages supported by
FREE Studio Plus.

Declaring functions

Whatever the PLC language you are using, FREE Studio Plus allows you to
disregard the previous syntax, as it supplies a friendly interface for using function
blocks.

Programs
Introduction

A program is defined in IEC 61131-1 as a “logical assembly of all the programming
language elements and constructs necessary for the intended signal processing
required for the control of a machine or process by a programmable controller
system”.

Declaration syntax

The declaration of a program must be performed as follows:
PROGRAM < program name>

Declaration of variables (see the relevant section)
Program body

END_PROGRAM

Keyword Description

Program Name Name of the program being declared.

Program body Specifies the operations to be performed to get the intended signal
processing. It can be written in any of the languages supported by FREE
Studio Plus.

Writing programs

Whatever the PLC language you are using, FREE Studio Plus allows you to
disregard the previous syntax, as it supplies a friendly interface for writing
programs.

9MA10256.04 257

Language Reference

Operator and Standard Blocks

Description
The availability of the following functions depends on the target device.

These functions are common to the whole set of programming languages and can
be used in any programmable organization unit (POU). They are accessible from
Operators and blocks window in Operator and standard blocks window tab.

Operators and standard blocks are sorted in groups:
• Arithmetic Functions and Operators, page 258
• Bistable Operators, page 262
• Bit Shift Functions, page 262
• Comparison Operators, page 263
• Conversion Functions, page 264
• Logic Functions, page 267
• Selection Functions, page 267
• String Functions, page 269

Arithmetic Functions and Operators

ABS

Description Absolute value. Computes the absolute value of input #0

Number of operands 1

Input data type Any numerical type

Output data type Same as input

Examples OUT := ABS(-5);(* OUT = 5 *)
OUT := ABS(-1.618);(* OUT = 1.618 *)
OUT := ABS(3.141592);(* OUT = 3.141592 *)

ACOS

Description Arc cosine. Computes the principal arc cosine of input #0; result is
expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := ACOS(1.0); (* OUT = 0.0 *)
OUT := ACOS(-1.0); (* OUT = PI *)

ADD

Description Arithmetic addition. Computes the sum of the two inputs.

Number of operands 2

Input data type Any numerical type

Output data type Same as Inputs

Examples OUT := ADD(20, 40); (* OUT = 60 *)

ASIN

Description Arc sine. Computes the principal arc sine of input #0; result is
expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

258 9MA10256.04

Language Reference

ASIN

Output data type LREAL where available, REAL otherwise

Examples OUT := ASIN(0.0); (* OUT = 0.0 *)
OUT := ASIN(1.0); (* OUT = PI / 2 *)

ATAN

Description Arc tangent. Computes the principal arc tangent of input #0; result is
expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := ATAN(0.0); (* OUT = 0.0 *)
OUT := ATAN(1.0); (* OUT = PI / 4 *)

ATAN2*

Description Arc tangent (with two parameters). Computes the principal arc tangent
of Y/X; result is expressed in radians

Number of operands 2

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := ATAN2(0.0, 1.0); (* OUT = 0.0 *)
OUT := ATAN2(1.0, 1.0); (* OUT = PI / 4 *)
OUT := ATAN2(-1.0, -1.0); (* OUT = (-3/4) * PI
*)
OUT := ATAN2(1.0, 0.0); (* OUT = PI / 2 *)

CEIL*

Description Rounding up to integer. Returns the smallest integer that is greater
than or equal to input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := CEIL(1.95); (* OUT = 2.0 *)
OUT := CEIL(-1.27); (* OUT = -1.0 *)

COS

Description Cosine. Computes the cosine function of input #0 expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := COS(0.0); (* OUT = 1.0 *)
OUT := COS(-3.141592); (* OUT ~ -1.0 *)

COSH*

Description Hyperbolic cosine. Computes the hyperbolic cosine function of input
#0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := COSH(0.0); (* OUT = 1.0 *)

9MA10256.04 259

Language Reference

DIV

Description Arithmetic division. Divides input #0 by input #1

Number of operands 2

Input data type Any numerical type

Output data type Same as Inputs

Examples OUT := DIV(20, 2); (* OUT = 10 *)

EXP

Description Natural exponential. Computes the exponential function of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := EXP(1.0); (* OUT ~ 2.718281 *)

FLOOR*

Description Rounding down to integer. Returns the largest integer that is less than
or equal to input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := FLOOR(1.95); (* OUT = 1.0 *)
OUT := FLOOR(-1.27); (* OUT = -2.0 *)

LN

Description Natural logarithm. Computes the logarithm with base e of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := LN(2.718281); (* OUT = 1.0 *)

LOG

Description Common logarithm. Computes the logarithm with base 10 of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := LOG(100.0);(* OUT = 2.0 *)

MOD

Description Module. Computes input #0 module input #1

Number of operands 2

Input data type Any numerical type

Output data type Same as Inputs

Examples OUT := MOD(10, 3); (* OUT = 1 *)

MUL

Description Arithmetic multiplication. Multiplies the two inputs.

Number of operands 2

260 9MA10256.04

Language Reference

MUL

Input data type Any numerical type

Output data type Same as Inputs

Examples OUT := MUL(10, 10); (* OUT = 100 *)

POW

Description Exponentiation. Raises Base to the power Expo

Number of operands 2

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := POW(2.0, 3.0); (* OUT = 8.0 *)
OUT := POW(-1.0, 5.0); (* OUT = -1.0 *)

SIN

Description Sine. Computes the sine function of input #0 expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := SIN(0.0); (* OUT = 0.0 *)
OUT := SIN(2.5 * 3.141592); (* OUT ~ 1.0 *)

SINH*

Description Hyperbolic sine. Computes the hyperbolic sine function of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := SINH(0.0); (* OUT = 0.0 *)

SQRT

Description Square root. Computes the square root of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := SQRT(4.0); (* OUT = 2.0 *)

SUB

Description Arithmetic subtraction. Subtracts input #1 from input #0

Number of operands 2

Input data type Any numerical type

Output data type Same as Inputs

Examples OUT := SUB(10, 3); (* OUT = 7 *)

TAN

Description Tangent. Computes the tangent function of input #0 expressed in
radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

9MA10256.04 261

Language Reference

TAN

Output data type LREAL where available, REAL otherwise

Examples OUT := TAN(0.0); (* OUT = 0.0 *)
OUT := TAN(3.141592 / 4.0); (* OUT ~ 1.0 *)

TANH*

Description Hyperbolic tangent. Computes the hyperbolic tangent function of input
#0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := TANH(0.0); (* OUT = 0.0 *)

* function provided as extension to the IEC 61131-3 standard.

Bistable Operators

R

Description Boolean reset.

Number of operands 1

Input data type BOOL

Output data type BOOL

Examples LD x
R y
ST z

S

Description Boolean set.

Number of operands 1

Input data type BOOL

Output data type BOOL

Examples LD x
S y
ST z

Bit Shift Functions
ROL

Description Input #0 left-shifted of Input #1 bits, circular.

Number of operands 2

Input data type Any numerical type

Output data type Same as Input #0

Examples OUT := ROL(IN := 16#1000CAFE, 4);
(* OUT = 16#000CAFE1 *)

ROR

Description Input #0 right-shifted of Input #1 bits, circular.

Number of operands 2

Input data type Any numerical type

262 9MA10256.04

Language Reference

ROR

Output data type Same as Input #0

Examples OUT := ROR(IN := 16#1000CAFE, 16);
(* OUT = 16#CAFE1000 *)

SHL

Description Input#0 left-shifted of Input #1 bits, zero filled on the right.

Number of operands 2

Input data type Any numerical type

Output data type Same as Input #0

Examples OUT := SHL(IN := 16#1000CAFE, 16);
(* OUT = 16#CAFE0000 *)

SHR

Description Input #0 right-shifted of Input #1 bits, zero filled on the left.

Number of operands 2

Input data type Any numerical type

Output data type Same as Input #0

Examples OUT := SHR(IN := 16#1000CAFE, 24);
(* OUT = 16#00000010 *)

Comparison Operators
Comparison operators can be also used to compare strings if this feature is
supported by the target device.

EQ

Description Equal to. Returns TRUE if Input #0 = Input #1, otherwise FALSE.

Number of operands 2

Input data type Any

Output data type BOOL

Examples OUT := EQ(TRUE, FALSE);(* OUT = FALSE *)
OUT := EQ(‘AZ’, ‘ABC’); (* OUT = FALSE *)

GE

Description Greater than or equal to. Returns TRUE if Input #0 >= Input #1,
otherwise FALSE.

Number of operands 2

Input data type Any but BOOL

Output data type BOOL

Examples OUT := GE(20, 20); (* OUT = TRUE *)
OUT := GE(‘AZ’, ‘ABC’); (* OUT = FALSE *)

GT

Description Greater than. Returns TRUE if Input #0 > Input #1, otherwise FALSE.

Number of operands 2

Input data type Any but BOOL

Output data type BOOL

Examples OUT := GT(0, 20); (* OUT = FALSE *)
OUT := GT(‘AZ’, ‘ABC’); (* OUT = TRUE *)

9MA10256.04 263

Language Reference

LE

Description Less than or equal to. Returns TRUE if Input #0 <= Input #1, otherwise
FALSE.

Number of operands 2

Input data type Any but BOOL

Output data type BOOL

Examples OUT := LE(20, 20); (* OUT = TRUE *)
OUT := LE(‘AZ’, ‘ABC’); (* OUT = FALSE *)

LT

Description Less than. Returns TRUE if Input #0 < Input #1, otherwise FALSE.

Number of operands 2

Input data type Any but BOOL

Output data type BOOL

Examples OUT := LT(0, 20); (* OUT = TRUE *)
OUT := LT(‘AZ’, ‘ABC’); (* OUT = FALSE *)

NE

Description Not equal to. Returns TRUE if Input #0!= Input #1, otherwise FALSE.

Number of operands 2

Input data type Any

Output data type BOOL

Examples OUT := NE(TRUE, FALSE); (* OUT = TRUE *)
OUT := NE(‘AZ’, ‘ABC’); (* OUT = TRUE *)

Conversion Functions
According to the IEC 61131-3 standard, type conversion functions shall have the
form *_TO_**, where “*” is the type of the input variable, and “**” the type of the
output variable (for example, INT_TO_REAL). FREE Studio Plus provides a more
convenient set of overloaded type conversion functions, relieving you to specify
the input variable type.

TO_BOOL

Description Conversion to BOOL (boolean)

Number of operands 1

Input data type Any numerical type

Output data type BOOL

Examples out := TO_BOOL(0); (* out = FALSE *)
out := TO_BOOL(1); (* out = TRUE *)
out := TO_BOOL(1000); (* out = TRUE *)

TO_BYTE

Description Conversion to BYTE (8-bit string)

Number of operands 1

Input data type Any numerical type or STRING

Output data type BYTE

Examples out := TO_BYTE(-1); (* out = 16#FF *)
out := TO_BYTE(16#100); (* out = 16#00 *)

264 9MA10256.04

Language Reference

TO_DINT

Description Conversion to DINT (32-bit signed integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type DINT

Examples out := TO_DINT(10.0); (* out = 10 *)
out := TO_DINT(16#FFFFFFFF); (* out = -1 *)

TO_DWORD

Description Conversion to DWORD (32-bit string)

Number of operands 1

Input data type Any numerical type or STRING

Output data type DWORD

Examples out := TO_DWORD(10.0); (* out = 16#0000000A *)
out := TO_DWORD(-1); (* out = 16#FFFFFFFF *)

TO_INT

Description Conversion to INT (16-bit signed integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type INT

Examples out := TO_INT(-1000.0); (* out = -1000 *)
out := TO_INT(16#8000); (* out = -32768 *)

TO_LREAL

Description Conversion to LREAL (64-bit floating point)

Number of operands 1

Input data type Any numerical type or STRING

Output data type LREAL

Examples out := TO_LREAL(-1000); (* out = -1000.0 *)
out := TO_LREAL(16#8000); (* out = -32768.0 *)

TO_REAL

Description Conversion to REAL (32-bit floating point)

Number of operands 1

Input data type Any numerical type or STRING

Output data type REAL

Examples out := TO_REAL(-1000); (* out = -1000.0 *)
out := TO_REAL(16#8000); (* out = -32768.0 *)

TO_SINT

Description Conversion to SINT (8-bit signed integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type SINT

Examples out := TO_SINT(-1); (* out = -1 *)
out := TO_SINT(16#100); (* out = 0 *)

9MA10256.04 265

Language Reference

TO_STRING

Description Conversion to STRING

Number of operands 1

Input data type Any numerical type

Output data type STRING

Examples str := TO_STRING(10.0); (* str = ‘10,0’ *)
str := TO_STRING(-1); (* str = ‘-1’ *)

TO_STRINGFORMAT

Description Conversion to STRING, with format specifier

Number of operands 2

Input data type Any numerical type, STRING

Output data type STRING

Examples str := TO_STRINGFORMAT(10, ‘%04d’); (* str = ‘0010’
*)

TO_UDINT

Description Conversion to UDINT (32-bit unsigned integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type UDINT

Examples out := TO_UDINT(10.0); (* out = 10 *)
out := TO_UDINT(16#FFFFFFFF); (* out = 4294967295
*)

TO_UINT

Description Conversion to UINT (16-bit unsigned integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type UINT

Examples out := TO_UINT(1000.0); (* out = 1000 *)
out := TO_UINT(16#8000); (* out = 32768 *)

TO_USINT

Description Conversion to USINT (8-bit unsigned integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type USINT

Examples out := TO_USINT(-1); (* out = 255 *)
out := TO_USINT(16#100); (* out = 0 *)

TO_WORD

Description Conversion to WORD (16-bit string)

Number of operands 1

Input data type Any numerical type or STRING

Output data type WORD

Examples out := TO_WORD(1000.0); (* out = 16#03E8 *)
out := TO_WORD(-32768); (* out = 16#8000 *)

266 9MA10256.04

Language Reference

Logic Functions

AND

Description Logical AND if both Input #0 and Input #1 are BOOL, otherwise bitwise
AND.

Number of operands 2

Input data type Any but STRING

Output data type Same as Inputs

Examples OUT := TRUE AND FALSE;(* OUT = FALSE *)
OUT := 16#1234 AND 16#5678;(* OUT = 16#1230 *)

NOT

Description Logical NOT if Input is BOOL, otherwise bitwise NOT.

Number of operands 1

Input data type Any but STRING

Output data type Same as Inputs

Examples OUT := NOT FALSE; (* OUT = TRUE *)
OUT := NOT 16#1234;(* OUT = 16#EDCB *)

OR

Description Logical OR if both Input #0 and Input #1 are BOOL, otherwise bitwise
OR.

Number of operands 2

Input data type Any but STRING

Output data type Same as Inputs

Examples OUT := TRUE OR FALSE; (* OUT = FALSE *)
OUT := 16#1234 OR 16#5678;(* OUT = 16#567C *)

XOR

Description Logical XOR if both Input #0 and Input #1 are BOOL, otherwise bitwise
XOR.

Number of operands 2

Input data type Any but STRING

Output data type Same as Inputs

Examples OUT := TRUE OR FALSE; (* OUT = TRUE *)
OUT := 16#1234 OR 16#5678; (* OUT = 16#444C *)

Selection Functions
LIMIT

Description Limits Input #0 to be equal or more than Input#1, and equal or less
than Input #2.

Number of operands 3

Input data type Any numerical type

Output data type Same as Inputs

Examples OUT := LIMIT(IN := 4, MN := 0, MX := 5); (* OUT =
4 *)
OUT := LIMIT(IN := 88, MN := 0, MX := 5);(* OUT =
5 *)
OUT := LIMIT(IN := -1, MN := 0, MX := 5);(* OUT =
0 *)

9MA10256.04 267

Language Reference

MAX

Description Maximum value selection

Number of operands 2…30

Input data type Any numerical type

Output data type Same as max Input

Examples OUT := MAX(-8, 120, -1000); (* OUT = 120 *)

MIN

Description Minimum value selection

Number of operands 2…30

Input data type Any numerical type

Output data type Same as min Input

Examples OUT := MIN(-8, 120, -1000); (* OUT = -1000 *)

MUX

Description Multiplexer. Selects one of N inputs depending on input K

Number of operands 3…30

Input data type Any numerical type

Output data type Same as selected Input

Examples OUT := MUX(0, A, B, C); (* OUT = A *)

SEL

Description Binary selection

Number of operands 3

Input data type BOOL, Any, Any

Output data type Same as selected Input

Examples OUT := SEL(G := FALSE, IN0 := X, IN1 := 5);
(* OUT = X *)

Standard Operators

ADR

Description Address of

Number of operands 1

Input data type Any type

Output data type Pointer to type

Examples ptr_x := ADR(x)

IMOVE

Description Query interface

Number of operands 1

Input data type Any interface type

Output data type Any interface type

Examples intf1 ?= obj1;

268 9MA10256.04

Language Reference

JMP

Description Jump (conditioned/negated)

Number of operands 0

Input data type Input

Output data type Label name

Examples JMP mylabel;

MOVE

Description Move

Number of operands 1

Input data type Any type

Output data type -

Examples MOVE x, y;

REF

Description Reference to

Number of operands 0

Input data type Any type

Output data type Reference to type

Examples ref_x = REF(x);

RET

Description Return (conditioned/negated)

Number of operands 0

Input data type -

Output data type -

Examples RET;

SIZEOF

Description Size of

Number of operands 1

Input data type Any type

Output data type Numeric output

Examples mysize := SIZEOF(myvar);

String Functions

CONCAT

Description Character string concatenation

Number of operands 2

Input data type STRING

Output data type STRING

Examples OUT := CONCAT(‘AB’, ‘CD’); (* OUT = ‘ABCD’ *)

9MA10256.04 269

Language Reference

DELETE

Description Delete L characters of IN, beginning at the P-th character position

Number of operands 3

Input data type STRING, UINT, UINT

Output data type STRING

Examples OUT := DELETE(IN := ‘ABXYC’, L := 2, P := 3);
(* OUT = ‘ABC’ *)

FIND

Description Find the character position of the beginning of the first occurrence of
IN2 in IN1. If no occurrence of IN2 is found, then OUT := 0.

Number of operands 2

Input data type STRING

Output data type UINT

Examples OUT := FIND(IN1 := ‘ABCBC’, IN2 := ‘BC’); (* OUT
= 2 *)

INSERT

Description Insert IN2 into IN1 after the P-th character position

Number of operands 3

Input data type STRING, STRING, UINT

Output data type STRING

Examples OUT := INSERT(IN1 := ‘ABC’, IN2 := ‘XY’, P := 2);
(* OUT = ‘ABXYC’ *)

LEFT

Description Leftmost L characters of IN

Number of operands 2

Input data type STRING, UINT

Output data type STRING

Examples OUT := LEFT(IN := ‘ASTR’, L := 3); (* OUT = ‘AST’
*)

LEN

Description String length function

Number of operands 1

Input data type STRING

Output data type UINT

Examples OUT := LEN(IN := ‘ASTR’); (* OUT = 4 *)

MID

Description L characters of IN, beginning at the P-th

Number of operands 3

Input data type STRING, UINT, UINT

Output data type STRING

Examples OUT := MID(IN := ‘ASTR’, L := 2, P := 2);
(* OUT = ‘ST’ *)

270 9MA10256.04

Language Reference

REPLACE

Description Replace L characters of IN1 by IN2, starting at the P-th character
position

Number of operands 4

Input data type STRING, STRING, UINT, UINT

Output data type STRING

Examples OUT := REPLACE(IN1 := ‘ABCDE’, IN2 := ‘X’, L := 2,
P := 3); (* OUT = ‘ABXE’ *)

RIGHT

Description Rightmost L characters of IN

Number of operands 2

Input data type STRING, UINT

Output data type STRING

Examples OUT := RIGHT(IN := ‘ASTR’, L := 3); (* OUT =
‘STR’ *)

Instruction List (IL)

Overview

Description
This section defines the semantics of the IL (Instruction List) language.

Syntax and Semantics

Syntax of IL Instructions
IL code is composed of a sequence of instructions. Each instruction begins on a
new line and contains an operator with optional modifiers, and, if necessary for the
particular operation, one or more operands separated by commas. Operands can
be any of the data representations for literals and for variables.

The instruction can be preceded by an identifying label followed by a colon (:).
Empty lines can be inserted between instructions.

Example:
START:

LD %IX1 (* Push button *)
ANDN %MX5.4 (* Not inhibited *)
ST %QX2 (* Fan out *)

The elements making up each instruction are classified as follows:

Label Operator
[+ modifier]

Operand Comment

START: LD %IX1 (* Push button *)

ANDN %MX5.4 (* Not inhibited *)

ST %QX2 (* Fan out *)

9MA10256.04 271

Language Reference

Semantics of IL Instructions
• Accumulator

Accumulator is a register that contains the value of the current result.
• Operators

Unless otherwise specified, the semantics of the operators is:
accumulator := accumulator OP operand
That is, the value of the accumulator is replaced by the result yielded by
operation OP applied to the current value of the accumulator itself, with
respect to the operand.
For instance, the instruction “AND %IX1” is interpreted as:
accumulator := accumulator AND %IX1
The instruction “GT %IW10” will have the boolean result TRUE if the current
value of the accumulator is greater than the value of input word 10, and the
boolean result FALSE otherwise:
accumulator := accumulator GT %IW10

• Modifiers
The modifier “N” indicates bitwise negation of the operand.
The modifier “C” indicates that the associated instruction can be performed
only if the value of the currently evaluated result is boolean 1 (or boolean 0 if
the operator is combined with the “N” modifier).
The left parenthesis modifier “(” indicates that evaluation of the operator must
be deferred until a right parenthesis operator “)” is encountered. The form of a
parenthesized sequence of instructions is presented below, referred to the
instruction:
accumulator := accumulator AND (%MX1.3 OR %MX1.4)

Standard Operators

Description
Standard operators with their allowed modifiers and operands are as listed below:

Opera-
tor

Modifiers Supported operand types:
Acc_type, Op_type

Semantics

LD N Any, Any Sets the accumulator equal to operand.

ST N Any, Any Stores the accumulator into operand
location.

S BOOL, BOOL Sets operand to TRUE if accumulator is
TRUE.

R BOOL, BOOL Sets operand to FALSE if accumulator is
TRUE.

AND N, (Any but REAL, Any but
REAL

Logical or bitwise AND

OR N, (Any but REAL, Any but
REAL

Logical or bitwise OR

XOR N, (Any but REAL, Any but
REAL

Logical or bitwise XOR

NOT Any but REAL Logical or bitwise NOT

ADD (Any but BOOL Addition

SUB (Any but BOOL Subtraction

MUL (Any but BOOL Multiplication

DIV (Any but BOOL Division

272 9MA10256.04

Language Reference

Opera-
tor

Modifiers Supported operand types:
Acc_type, Op_type

Semantics

MOD (Any but BOOL Modulo-division

GT (Any but BOOL Comparison: greater than

GE (Any but BOOL Comparison: greater or equal

EQ (Any but BOOL Comparison: equal

NE (Any but BOOL Comparison: not equal

LE (Any but BOOL Comparison: equal or less

LT (Any but BOOL Comparison: less than

JMP C, N Label Jumps to label

CAL C, N FB instance name Calls function block

RET C, N Returns from called program, function, or
function block.

) Evaluates deferred operation.

Calling Functions and Function Blocks

Calling Functions
Functions (as defined in the relevant section) are invoked by placing the function
name in the operator field. This invocation takes the following form:
LD 1
MUX 5, var0, -6.5, 3.14
ST vRES

The first argument is not contained in the input list, but the accumulator is used as
the first argument of the function. Additional arguments (starting with the second),
if required, are given in the operand field, separated by commas, in the order of
their declaration. For example, operatorMUX in the previous table takes 5
operands, the first of which is loaded into the accumulator, whereas the remaining
4 arguments are orderly reported after the function name.

The following rules apply to function invocation:
• Assignments to VAR_INPUT arguments may be empty, constants, or

variables.
• Execution of a function ends upon reaching a RET instruction or the physical

end of the function. When this happens, the output variable of the function is
copied into the accumulator.

Calling Function Blocks

Function blocks (as defined in the relevant section) can be invoked conditionally
and unconditionally via the CAL operator. This invocation takes the following form:
LD A
ADD 5
ST INST5.IN1
LD 3.141592
ST INST5.IN2
CAL INST5
LD INST5.OUT1
ST vRES
LD INST5.OUT2
ST vVALID

This method of invocation is equivalent to a CAL with an argument list, which
contains only one variable with the name of the FB instance.

Input arguments are passed to / output arguments are read from the FB instance
through ST / LD operations performed on operands taking the following form:

9MA10256.04 273

Language Reference

FBInstanceName.IO_var

where

Keyword Description

FBInstanceName Name of the instance to be invoked.

IO_var Input or output variable to be written / read.

Function Block Diagram (FBD)

Overview

Description
This section defines the semantics of the FBD (Function Block Diagram)
language.

Representation of Lines and Blocks

Description
The graphic language elements are drawn using graphic or semi-graphic
elements, as presented in the following table:

Feature Example

Lines

Line crossing with connection

Blocks with connecting lines and unconnected
pins

No storage of data or association with data elements can be associated with the
use of connectors; hence, to avoid ambiguity, connectors cannot be given any
identifier.

274 9MA10256.04

Language Reference

Direction of Flow in Networks

Description
A network is defined as a maximal set of interconnected graphic elements. A
network label delimited on the right by a colon (:) can be associated with each
network or group of networks. The scope of a network and its label is local to the
program organization unit (POU) where the network is located.

Graphic languages are used to represent the flow of a conceptual quantity through
one or more networks representing a control plan. Namely, in the case of function
block diagrams (FBD), the “Signal flow” is typically used, analogous to the flow of
signals between elements of a signal processing system. Signal flow in the FBD
language is from the output (right-hand) side of a function or function block to the
input (left-hand) side of the function or function blocks so connected.

Evaluation of Networks

Order of Evaluation of Networks
The order in which networks and their elements are evaluated is not necessarily
the same as the order in which they are labeled or displayed. When the body of a
program organization unit (POU) consists of one or more networks, the results of
network evaluation within the aforesaid body are functionally equivalent to the
observance of the following rules:

• No element of a network is evaluated until the states of all of its inputs have
been evaluated.

• The evaluation of a network element is not complete until the states of all of
its outputs have been evaluated.

• As stated when describing the FBD editor, a network number is automatically
assigned to every network. Within a program organization unit (POU),
networks are evaluated according to the sequence of their number: network N
is evaluated before network N+1, unless otherwise specified by using the
execution control elements.

Combination of Elements
Elements of the FBD language must be interconnected by signal flow lines.

Outputs of blocks shall not be connected together. In particular, the “wired-OR”
construct of the LD language is not allowed, as an explicit boolean “OR” block is
required.

Feedback

A feedback path is said to exist in a network when the output of a function or
function block is used as the input to a function or function block which precedes it
in the network; the associated variable is called a feedback variable.

Feedback paths can be utilized subject to the following rules:
• Feedback variables must be initialized, and the initial value is used during the

first evaluation of the network. Look at the global variables editor, the local
variables editor, or the parameters editor to know how to initialize the
respective item.

• Once the element with a feedback variable as output has been evaluated, the
new value of the feedback variable is used until the next evaluation of the
element.

For instance, the boolean variable RUN is the feedback variable in the following
example:

9MA10256.04 275

Language Reference

Explicit loop:

Implicit loop:

Execution Control Elements

EN/ENO Signals
Additional boolean EN (Enable) input and ENO (Enable Out) characterize FREE
Studio Plus blocks, according to the declarations:

EN ENO

VAR_INPUT
EN: BOOL := 1;

END_VAR

VAR_OUTPUT
ENO: BOOL;

END_VAR

Refer to the Modifying properties of blocks section, page 149 to know how to add
these pins to a block:

When these variables are used, the execution of the operations defined by the
block are controlled according to the following rules:

• If the value of EN is FALSE when the block is invoked, the operations defined
by the function body are not executed and the value of ENO is reset to FALSE
by the programmable controller system.

• Otherwise, the value of ENO is set to TRUE by the programmable controller
system, and the operations defined by the block body are executed.

276 9MA10256.04

Language Reference

Jumps
Jumps are represented by a boolean signal line terminated in a double arrowhead.
The signal line for a jump condition originates at a boolean variable, or at a
boolean output of a function or function block. A transfer of program control to the
designated network label occurs when the boolean value of the signal line is
TRUE; thus, the unconditional jump is a special case of the conditional jump.

The target of a jump is a network label within the program organization unit within
which the jump occurs.

Symbol / Example Explanation

Unconditional Jump

Conditional Jump

Example:

Jump Condition Network

Conditional Returns
• Conditional returns from functions and function blocks are implemented using

a RETURN construction as presented in the following table. Program
execution is transferred back to the invoking entity when the boolean input is
TRUE, and continues in the normal fashion when the boolean input is FALSE.

• Unconditional returns are provided by the physical end of the function or
function block.

Symbol / Example Explanation

Conditional Return

Example:

Return Condition Network

9MA10256.04 277

Language Reference

Ladder Diagram (LD)

Overview

Description
This section defines the semantics of the LD (Ladder Diagram) language.

Power Rails

Description
The LD network is delimited on the left side by a vertical line known as the left
power rail, and on the right side by a vertical line known as the right power rail.
The right power rail may be explicit in the FREE Studio Plus implementation and it
is always displayed.

The two power rails are always connected with a horizontal line named signal link.
The LD elements must be placed and connected to the signal link.

Description Symbol

Left power rail (with attached horizontal link)

Right power rail (with attached horizontal link)

Power rails connected by the signal link

Link Elements and States

Description
Link elements may be horizontal or vertical. The state of the link elements shall be
denoted “ON” or “OFF”, corresponding to the literal boolean values 1 or 0,
respectively. The term link state shall be synonymous with the term power flow.

The following properties apply to the link elements:
• The state of the left rail shall be considered ON at all times. No state is

defined for the right rail.
• A horizontal link element is indicated by a horizontal line. A horizontal link

element transmits the state of the element on its immediate left to the element
on its immediate right.

• The vertical link element consists of a vertical line intersecting with one or
more horizontal link elements on each side. The state of the vertical link
represents the inclusive OR of the ON states of the horizontal links on its left
side, that is, the state of the vertical link is:
◦ OFF if the states of all the attached horizontal links to its left are OFF.
◦ ON if the state of one or more of the attached horizontal links to its left is
ON.

278 9MA10256.04

Language Reference

• The state of the vertical link is copied to all of the attached horizontal links on
its right.

• The state of the vertical link is not copied to any of the attached horizontal
links on its left.

Description Symbol

Vertical link with attached horizontal links

Contacts

Description
A contact is an element which imparts a state to the horizontal link on its right side
which is equal to the boolean AND of the state of the horizontal link at its left side
with an appropriate function of an associated boolean input, output, or memory
variable.

A contact does not modify the value of the associated boolean variable. Standard
contact symbols are given in the following table:

Name Description Symbol

Normally open
contact

The state of the left link is copied to the right link if the
state of the associated boolean variable is ON.
Otherwise, the state of the right link is OFF.

Normally closed
contact

The state of the left link is copied to the right link if the
state of the associated boolean variable is OFF.
Otherwise, the state of the right link is OFF.

Positive transition-
sensing contact

The state of the right link is ON from one evaluation of
this element to the next when a transition of the
associated variable from OFF to ON is sensed at the
same time that the state of the left link is ON. The state
of the right link shall be OFF at all other times.

Negative transition-
sensing contact

The state of the right link is ON from one evaluation of
this element to the next when a transition of the
associated variable from ON to OFF is sensed at the
same time that the state of the left link is ON. The state
of the right link shall be OFF at all other times.

Coils

Description
A coil copies the state of the link on its left side to the link on its right side without
modification, and stores an appropriate function of the state or transition of the left
link into the associated boolean variable.

Standard coil symbols are presented in the following table:

9MA10256.04 279

Language Reference

Name Description Symbol

Coil The state of the left link is copied to the associated
boolean variable.

Negated coil The inverse of the state of the left link is copied to the
associated boolean variable, that is, if the state of
the left link is OFF, then the state of the associated
variable is ON, and vice versa.

SET (latch) coil The associated boolean variable is set to the ON
state when the left link is in the ON state, and
remains set until reset by a RESET coil.

RESET (unlatch) coil The associated boolean variable is reset to the OFF
state when the left link is in the ON state, and
remains reset until set by a SET coil.

Positive transition-
sensing coil

The state of the associated boolean variable is ON
from one evaluation of this element to the next when
a transition of the left link from OFF to ON is sensed.

Negative transition-
sensing coil

The state of the associated boolean variable is ON
from one evaluation of this element to the next when
a transition of the left link from ON to OFF is sensed.

Operators, Functions, and Function Blocks

Description
The representation of functions and function blocks in the LD language is similar
to the one used for FBD. At least one boolean input and one boolean output shall
be displayed on each block to allow for power flow through the block as presented
in the following figure:

Structured Text (ST)

Overview

Description
This section defines the semantics of the ST (Structured Text) language.

Structured Text is a textual high-level programming language, similar to PASCAL
or C. The program code is composed of expressions and instructions. In contrast
to IL (Instruction List), you can use numerous constructions for programming
loops, thus allowing the development of complex algorithms.

280 9MA10256.04

Language Reference

Expressions

Description
An expression is a construct which, when evaluated, yields a value corresponding
to one of the data types listed in the elementary data types table, page 248. FREE
Studio Plus does not set any constraint on the maximum length of expressions.

Expressions are composed of operators, operands, and/or assignments. An
operand can be a constant, a variable, a function call, or another expression.

Operands
An operand can be a literal, a variable, a function invocation, or another
expression.

Operators
Open the table of operators to see the list of all the operators supported by ST.
The evaluation of an expression consists of applying the operators to the
operands in a sequence defined by the operator precedence rules.

Operator Precedence Rules
Operators have different levels of precedence, as specified in the table of
operators. The operator with highest precedence in an expression is applied first,
followed by the operator of next lower precedence, and so on, until evaluation is
complete. Operators of equal precedence are applied as written in the expression
from left to right.

For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4,
respectively, then:
A+B-C*ABS(D)

yields -9, and:
(A+B-C)*ABS(D)

yields 0.

When an operator has two operands, the leftmost operand is evaluated first. For
example, in the expression
SIN(A)*COS(B)

the expression SIN(A) is evaluated first, followed by COS(B), followed by
evaluation of the product.

Functions are invoked as elements of expressions consisting of the function name
followed by a parenthesized list of arguments, as defined in the relevant section.

9MA10256.04 281

Language Reference

Operators of the ST Language

Operation Symbol Precedence

Parenthesization (<expression>) HIGHEST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LOWEST

Function evaluation <fname>(<arglist>)

Negation Complement -
NOT

Exponentiation **

Multiply Divide Modulo *
/
MOD

Add Subtract +
-

Comparison <, >, <=, >=

Equality Inequality =
<>

Boolean AND AND

Boolean Exclusive OR XOR

Boolean OR OR

Statements in ST

Description
All statements comply with the following rules:

• they are terminated by semicolons;
• unlike IL, a carriage return or new line character is treated the same as a

space character;
• FREE Studio Plus does not set any constraint on the maximum length of

statements.
ST statements can be divided into classes, according to their semantics.

Assignments

Semantics
The assignment statement replaces the current value of a single or multi-element
variable by the result of evaluating an expression.

The assignment statement is also used to assign the value to be returned by a
function, by placing the function name to the left of an assignment operator in the
body of the function declaration. The value returned by the function is the result of
the most recent evaluation of such an assignment.

Syntax
An assignment statement consists of a variable reference on the left-hand side,
followed by the assignment operator “:=”, followed by the expression to be
evaluated. For instance, the statement
A := B ;

282 9MA10256.04

Language Reference

would be used to replace the single data value of variable A by the current value of
variable B if both were of type INT.

Examples
Assignment:
a := b ;

Assignment:
pCV := pCV + 1 ;

Assignment with function invocation:
c := SIN(x);

Assigning the output value to a function:
FUNCTION SIMPLE_FUN : REAL

variables declaration
...
function body
...
SIMPLE_FUN := a * b - c ;

END_FUNCTION

Function and Function Block Statements

Semantics
• Functions are invoked as elements of expressions consisting of the function

name followed by a parenthesized list of arguments. Each argument can be a
literal, a variable, or an arbitrarily complex expression.

• Function blocks are invoked by a statement consisting of the name of the
function block instance followed by a parenthesized list of arguments. Both
invocation with formal argument list and with assignment of arguments are
supported.

• RETURN: function and function block control statements consist of the
mechanisms for invoking function blocks and for returning control to the
invoking entity before the physical end of a function or function block. The
RETURN statement provides early exit from a function or a function block (for
example, as the result of the evaluation of an IF statement).

Syntax
Function:
dst_var := function_name(arg1, arg2 , ... , argN);

Function block with formal argument list:
instance_name(var_in1 := arg1 ,

var_in2 := arg2 ,
... ,
var_inN := argN);

Function block with assignment of arguments:
instance_name.var_in1 := arg1;
...
instance_name.var_inN := argN;
instance_name();

Function and function block control statement:
RETURN;

9MA10256.04 283

Language Reference

Examples
FB invocation with formal argument list:
CMD_TMR(IN := %IX5,PT:= 300) ;

FB invocation with assignment of arguments:
IN := %IX5 ;
PT:= 300 ;
CMD_TMR() ;

FB output usage:
a := CMD_TMR.Q;

Early exit from function or function block:
RETURN ;

Selection Statements

Semantics
Selection statements include the IF and CASE statements. A selection statement
selects one (or a group) of its component statements for execution based on a
specified condition.

• IF: the IF statement specifies that a group of statements is to be executed
only if the associated boolean expression evaluates to the value TRUE. If the
condition is false, then either no statement is to be executed, or the statement
group following the ELSE keyword (or the ELSIF keyword if its associated
boolean condition is true) is executed.

• CASE: the CASE statement consists of an expression which evaluates to a
variable of type DINT (the “selector”), and a list of statement groups, each
group being labeled by one or more integer or ranges of integer values, as
applicable. It specifies that the first group of statements, one of whose ranges
contains the computed value of the selector, is to be executed. If the value of
the selector does not occur in a range of any case, the statement sequence
following the keyword ELSE (if it occurs in the CASE statement) is executed.
Otherwise, none of the statement sequences is executed.

FREE Studio Plus does not set any constraint on the maximum allowed number of
selections in CASE statements.

Syntax
Square brackets include optional code while braces include repeatable portions of
code.

IF:
IF expression1 THEN

stat_list
[{ ELSIF expression2 THEN

stat_list }]
ELSE

stat_list
END_IF ;

CASE:
CASE expression1 OF

intv [{, intv }] :
stat_list

{ intv [{, intv }] :
stat_list }

[ELSE
stat_list]

END_CASE ;

284 9MA10256.04

Language Reference

intv being either a constant or an interval: a or a..b

Examples
IF statement:
IF d < 0.0 THEN

nRoots := 0 ;
ELSIF d = 0.0 THEN

nRoots := 1 ;
x1 := -b / (2.0 * a) ;

ELSE
nRoots := 2 ;
x1 := (-b + SQRT(d)) / (2.0 * a) ;
x2 := (-b - SQRT(d)) / (2.0 * a) ;

END_IF ;

CASE statement:
CASE tw OF

1, 5:
display := oven_temp ;

2:
display := motor_speed ;

3:
display := gross_tare;

4, 6..10:
display := status(tw - 4) ;

ELSE
display := 0;
tw_error := 1;

END_CASE ;

Iteration Statements

Semantics
Iteration statements specify that the group of associated statements are executed
repeatedly. The FOR statement is used if the number of iterations can be
determined in advance; otherwise, theWHILE or REPEAT constructs are used.

• FOR: the FOR statement indicates that a statement sequence is repeatedly
executed, up to the END_FOR keyword, while a progression of values is
assigned to the FOR loop control variable. The control variable, initial value,
and final value are expressions of the same integer type (for example, SINT,
INT, or DINT) and cannot be altered by any of the repeated statements. The
FOR statement increments the control variable up or down from an initial
value to a final value in increments determined by the value of an expression.
The default increment value is 1. The test for the termination condition is
made at the beginning of each iteration so that the statement sequence is not
executed if the initial value exceeds the final value.

• WHILE: theWHILE statement causes the sequence of statements up to the
END_WHILE keyword to be executed repeatedly until the associated boolean
expression is false. If the expression is initially false, then the group of
statements is not executed at all.

• REPEAT: the REPEAT statement causes the sequence of statements up to
the UNTIL keyword to be executed repeatedly (and at least once) until the
associated boolean condition is true.

• EXIT: the EXIT statement is used to terminate iterations before the
termination condition is satisfied. When the EXIT statement is located within
nested iterative constructs, exit is from the innermost loop in which the EXIT
is located, that is, control passes to the next statement after the first loop
terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT
statement.

9MA10256.04 285

Language Reference

NOTE: TheWHILE and REPEAT statements cannot be used to achieve
interprocess synchronization, for example as a “wait loop” with an externally
determined termination condition. The SFC elements defined must be used for
this purpose.

Syntax
Square brackets include optional code while braces include repeatable portions of
code. If the terminating condition is not correct, it can cause an endless loop.

NOTICE
UNINTENDED EQUIPMENT OPERATION
• Ensure that the variable used in FOR instructions is of a sufficient capacity

(has a great upper limit) to account for the <END_VALUE> + 1.
• Ensure that the WHILE loop will be terminated within the instructions of the

loop by creating a FALSE condition of the boolean expression.
• Ensure that the REPEAT loop will be terminated within the instructions of the

loop by creating a TRUE condition of the boolean expression.
Failure to follow these instructions can result in equipment damage.

FOR:
FOR control_var := init_val TO end_val [BY increm_val] DO

stat_list
END_FOR ;

WHILE:
WHILE expression DO

stat_list
END_WHILE ;

REPEAT:
REPEAT

stat_list
UNTIL expression

END_REPEAT ;

Examples
FOR statement:
j := 101 ;
FOR i := 1 TO 100 BY 2 DO

IF arrvals[i] = 57 THEN
j := i ;
EXIT ;

END_IF ;
END_FOR ;

WHILE statement:
j := 1 ;
WHILE j <=100 AND arrvals[i] <> 57 DO

j := j + 2 ;
END_WHILE ;

REPEAT statement:
j := -1 ;
REPEAT

j := j + 2 ;
UNTIL j = 101 AND arrvals[i] = 57

END_REPEAT ;

286 9MA10256.04

Language Reference

IFDEF Statement to Exclude a Portion of Code
LogicLab allows you to exclude from the compilation only a specific portion of
code and checking if a certain symbol is defined, using the IFDEF feature.

First of all, the IFDEF feature needs to be enabled, since it’s not an IEC standard
feature. You can do that by selecting Project > Project options > Code
generation and then checking the Enable preprocessor directives checkbox.

Refer to Code Generation Tab, page 102.
IMPORTANT: This feature is available only in ST, LD and FBD languages.

This feature will exclude from compilation the selected code only if a specified
symbol has not been defined; the symbol to be specified can be any symbol or
POU (program, function, function block, global variable...) but it must be
GLOBALLY VISIBLE.

Using IFDEF in ST Languages
Inside an ST program, you can disable a portion of code including it inside the
IFDEF syntax.

{ IFDEF : checkSymbol }

loopsValue := 0;

for I := 0 to 15 do

bit := (y + 0.9) > (0.125*TO_REAL(i));

if bit then

loopsValue := loopsValue or RotateBit(i);

end_if;

end_for;

{ ENDIF }

Using IFDEF in LD Languages
Inside an LD program, user can put under IFDEF condition every single network,
but not just a portion of a network.

Must be opened the network properties window, and inserted the specific symbol
to be checked.

9MA10256.04 287

Language Reference

Using IFDEF in FBD Languages
Like LD language, also with FBD is possible to put under IFDEF condition every
single network, but not just a portion of a network.

Must be opened the network properties window, and inserted the specific symbol
to be checked.

288 9MA10256.04

Language Reference

IFDEF Supported Format
The condition of a valid IFDEF syntax can be more complex thag just a globally
visible symbol; here’s some example of valid IFDEF syntax:

• {IFDEF: symbol_1}
• {IFDEF: symbol_1 AND symbol_2}
• {IFDEF: symbol_1 OR symbol_2}
• {IFDEF: symbol_1 AND (symbol_2 OR symbol_3)}
• {IFDEF: symbol_1 AND NOT symbol_2}
• {IFDEF: symbol_1 OR NOT symbol_2}

Be aware that currently, due to an implementation limit, the negation of an
expression is not supported; that means that the following syntax is NOT
supported:

• {IFDEF: symbol_1 AND NOT (symbol_2 AND symbol_3)}
The NOT statement must be used with a symbol, not with an expression.

Sequential Function Chart (SFC)

Overview

Description
This section defines Sequential Function Chart (SFC) elements to structure the
internal organization of a PLC program organization unit (POU), written in one of

9MA10256.04 289

Language Reference

the languages defined in this standard, for performing sequential control functions.
The definitions in this section are derived from IEC 848, with the necessary
changes to convert the representations from a standard documentation to a set of
execution control elements for a PLC program organization unit.

Since SFC elements require storage of state information, the only program
organization units which can be structured using these elements are function
blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the
entire program organization unit is so partitioned. If no SFC partitioning is given for
a program organization unit, the entire program organization unit is considered to
be a single action which executes under the control of the invoking entity.

SFC elements

The SFC elements provide a means of partitioning a PLC program organization
unit into a set of steps and transitions interconnected by directed links. Associated
with each step is a set of actions, and with each transition is associated a
transition condition.

Steps

Definition
A step represents a situation where the behavior of a program organization unit
(POU) with respect to its inputs and outputs follows a set of rules defined by the
associated actions of the step. A step is either active or inactive. At any given
moment, the state of the program organization unit is defined by the set of active
steps and the values of its internal and output variables.

A step is represented graphically by a block containing a step name in the form of
an identifier. The directed links into the step can be represented graphically by a
vertical line attached to the top of the step. The directed links out of the step can
be represented by a vertical line attached to the bottom of the step.

Representation Description

Step

(graphical representation with direct links)

FREE Studio Plus does not set any constraint on the maximum number of steps
per SFC within the bounds of the available memory.

Initial Step
The initial state of the program organization unit is represented by the initial values
of its internal and output variables, and by its set of initial steps, that is, the steps
which are initially active. Each SFC network, or its textual equivalent, has exactly
one initial step. An initial step can be drawn graphically with double lines for the
borders, as presented below. For system initialization, the default initial state is
FALSE for ordinary steps and TRUE for initial steps.

FREE Studio Plus cannot compile an SFC network not containing exactly one
initial step.

290 9MA10256.04

Language Reference

Representation Description

Initial step

(graphical representation with direct links)

Actions
An action can be:

• A collection of instructions in the IL language;
• A collection of networks in the FBD language;
• A collection of rungs in the LD language;
• A collection of statements in the ST language;
• A sequential function chart (SFC) organized as defined in this section.

Zero or more actions can be associated with each step. Actions are declared via
one of the textual structuring elements listed in the following table:

Structuring element Description

STEP StepName :
(* Step body *)

END_STEP

Step (textual form)

INITIAL_STEP StepName :
(* Step body *)

END_STEP

Initial step (textual form)

Such a structuring element exists in the lsc file for every step having at least one
associated action.

Action Qualifiers
The time when an action associated to a step is executed depends on its action
qualifier.

FREE Studio Plus implements the following action qualifiers:

Qualifi-
er

Description Meaning

N Non-stored (null qualifier) The action is executed as long as the step remains active.

P Pulse The action is executed only once per step activation,
regardless of the number of cycles the step remains
active.

If a step has zero associated actions, then it is considered as having a WAIT
function, that is, waiting for a successor transition condition to become true.

Jumps
Direct links flow only downwards. To return to an upper step from a lower one, you
cannot draw a logical wire from the latter to the former. A special type of block
exists, called Jump, which lets you implement such a transition.

A Jump block is logically equivalent to a step, as they have to always be
separated by a transition.

9MA10256.04 291

Language Reference

Representation Description

Jump

(logical link to the destination step)

Transitions

Definition
A transition represents the condition whereby control passes from one or more
steps preceding the transition to one or more successor steps along the
corresponding directed link. The transition is represented by a small gray square
across the vertical directed link.

The direction of evolution following the directed links is from the bottom of the
predecessor steps to the top of the successor steps.

Transition Condition
Each transition has an associated transition condition which is the result of the
evaluation of a single boolean expression. A transition condition which is always
true is represented by the keyword TRUE, whereas a transition condition always
false is symbolized by the keyword FALSE.

A transition condition can be associated with a transition by one of the following
means:

Representation Description

By placing the appropriate boolean constant {TRUE, FALSE} adjacent
to the vertical directed link.

By declaring a boolean variable, whose value determines whether the
transition is cleared.

By writing a piece of code, in any of the languages supported by FREE
Studio Plus, except for SFC. The result of the evaluation of such a code
determines the transition condition.

The scope of a transition name is local to the program organization unit (POU)
where the transition is located.

Rules of Evolution

Introduction
The initial situation of an SFC network is characterized by the initial step which is
in the active state upon initialization of the program or function block containing
the network.

Evolutions of the active states of steps take place along the directed links when
caused by the clearing of one or more transitions.

292 9MA10256.04

Language Reference

A transition is enabled when all the preceding steps, connected to the
corresponding transition symbol by directed links, are active. The clearing of a
transition occurs when the transition is enabled and when the associated
transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the
immediately preceding steps connected to the corresponding transition symbol by
directed links, followed by the activation of all the immediately following steps.

The alternation Step/Transition and Transition/Step are always maintained in SFC
element connections, that is:

• Two steps are never directly linked; they are always separated by a transition;
• Two transitions are never directly linked; they are always separated by a step.

When the clearing of a transition leads to the activation of several steps at the
same time, the sequences which these steps belong to are called simultaneous
sequences. After their simultaneous activation, the evolution of each of these
sequences becomes independent. In order to emphasize the special nature of
such constructs, the divergence and convergence of simultaneous sequences is
indicated by a double horizontal line.

The clearing time of a transition may theoretically be considered as short as one
may wish, but it can never be zero. In practice, the clearing time is imposed by the
PLC implementation: several transitions which can be cleared simultaneously are
cleared simultaneously, within the timing constraints of the particular PLC
implementation and the priority constraints defined in the sequence evolution
table. For the same reason, the duration of a step activity can never be considered
to be zero. Testing of the successor transition conditions of an active step shall not
be performed until the effects of the step activation have propagated throughout
the program organization unit where the step is declared.

Sequence Evolution Table
This table defines the syntax and semantics of the allowed combinations of steps
and transitions.

9MA10256.04 293

Language Reference

Example Rule

Normal transition:

An evolution from step S3 to step S4 takes place if
and only if step S3 is in the active state and the
transition condition c is TRUE.

Divergent transition:

An evolution takes place from S5 to S6 if and only if
S5 is active and the transition condition e is TRUE,
or from S5 to S8 only if S5 is active and f is TRUE
and e is FALSE.

Convergent transition:

An evolution takes place from S7 to S10 only if S7 is
active and the transition condition h is TRUE, or from
S9 to S10 only if S9 is active and j is TRUE.

294 9MA10256.04

Language Reference

Example Rule

Simultaneous divergent transition:

An evolution takes place from S11 to S12, S14,...
only if S11 is active and the transition condition b
associated to the common transition is TRUE. After
the simultaneous activation of S12, S14, and so on,
the evolution of each sequence proceeds
independently.

Simultaneous convergent transition:

An evolution takes place from S13, S15,... to S16
only if all steps above and connected to the double
horizontal line are active and the transition condition
d associated to the common transition is TRUE.

9MA10256.04 295

Language Reference

Examples

Invalid scheme Equivalent allowed scheme Note

Expected behavior: an
evolution takes place from
S30 to S33 if a is FALSE and
d is TRUE.

The scheme in the leftmost
column is invalid because
conditions d and TRUE are
directly linked.

Expected behavior: an
evolution takes place from
S32 to S31 if c is FALSE and
d is TRUE.

The scheme in the leftmost
column is invalid because
direct links flow only
downwards. Upward
transitions can be performed
via jump blocks.

SFC Control Flags

Description
FREE Studio Plus provides some control flags for SFC program or function
blocks.

To enable this feature, refer to paragraph Code generation, page 102.

Those flags are:
• <POU name>_HOLD_SFC (type BOOL);
• <POU name>_RESET_SFC (type BOOL).

296 9MA10256.04

Language Reference

Where <POU name>means the name of the SFC POU (program or function
block).

For example, if the SFC POU is named Main, the control flags are namedMain_
HOLD_SFC andMain_RESET_SFC.

Another couple of actions is available for every SFC action, which also are
contained in an SFC POU.

For example, if the program Main contains an SFC action named Execute, the
control flags of this action are Main_Execute_HOLD_SFC andMain_Execute_
RESET_SFC.

Hold Flag
Following the main characteristics of the <POU name>_HOLD_SFC flag:

• the default value is FALSE;
• When set to TRUE, the SFC block, which is referred to (the one with the

same name as <POU name>), it is kept in the current status (hold) and no
code is executed;

• When the flag is set back to FALSE, the SFC block execution is recovered
from exactly the same point in which was set to hold, trough <POU name>_
HOLD_SFC := TRUE.

Reset Flag
Following the main characteristics of the <POU name>_RESET_SFC flag:

• The default value is FALSE;
• When set to TRUE, the SFC block, which is referred to (the one with the

same name as <POU name>), it is brought back to the initial state, that is the
execution state of the init action.

• This is an auto-reset flag, which means that if it is set to TRUE its own state
becomes FALSE after its reset action has been executed. It is not necessary
to bring the <POU name>_RESET_SFC value back to FALSE.

Flags Visibility
The <POU name>_HOLD_SFC and <POU name>_RESET_SFC flags are
automatically generated from the code compiler and they belong to the local
variables of the POU which are referred to.

FREE Studio Plus does not show this flags in the variables list of the POU; they
are hidden but in any case they can be used everywhere within the code.

Check an SFC POU from Other Programs

Description
To allow the managing of an SFC POU from other programs, FREE Studio Plus
provides the following functionalities:

• The compiler automatically generates the <POU name>_RESET_SFC and
<POU name>_HOLD_SFC flags.

• If the SFC POU is a function block, the user has the possibility to declare, as
VAR_INPUT and type BOOL, both flags having the name of the SFC POU
control flags.

9MA10256.04 297

Language Reference

• If the SFC POU is a program, the user has the possibility to declare, as VAR_
GLOBAL and type BOOL, both flags having the name of the SFC POU
control flags.

• In both previous cases, FREE Studio Plus compiler uses the variables
declared among the VAR_INPUT or VAR_GLOBAL ones and not those
automatically generated (therefore they are not generated).

Using these techniques, user then can manage the working state of the SFC POU
from other POU using the INPUT variables of the SFC POU.

Example
FUNCTION_BLOCK test

VAR_INPUT
...
test_RESET_SFC : BOOL; (* Control flag explicitly

declared *)
END_VAR
...

END_FUNCTION_BLOCK
PROGRAM Main

VAR
...
block : test; (* SFC block instance *)

END_VAR
...
(* Reset SFC block state *)
block.test_RESET_SFC := TRUE;
...

END_PROGRAM

SFC Macro Library
FREE Studio Plus makes available a library called SFCControl.pll to allow you to
manage the SFC states trough commands instead of variable settings.

This library is composed by macros usable only in ST language.

Usage Example of the Control Flags
Following are some example of control flags usage, assuming the SFC POU is
named Main:

• Hold (freeze):
Main_HOLD_SFC := TRUE;

• Restart from hold state:
Main_HOLD_SFC := FALSE;

• Restart form initial state of an SFC block in hold state:
Main_RESET_SFC := TRUE;
Main_HOLD_SFC := FALSE;

• Reset to initial state and instant restart of SFC block:
Main_RESET_SFC := TRUE; (* automatic reset from compiler
*).

298 9MA10256.04

Language Reference

FREE Studio Plus Language Extensions

Overview

Description
FREE Studio Plus features a few extensions to the IEC 61131-3 standard in order
to further enrich the language and to adapt to different coding styles.

Macros

Description
FREE Studio Plus implements macros in the same way a C programming
language pre-processor does.

Macros can be defined using the following syntax:
MACRO <macro name>

PAR_MACRO
<parameter list>

END_PAR
<macro body>

END_MACRO

The parameter list may be empty, thus distinguishing between object-like macros,
which do not take parameters, and function-like macros, which take parameters.

A concrete example of macro definition is the following, which takes two bytes and
composes a 16-bit word:
MACRO MAKEWORD

PAR_MACRO
lobyte;
hibyte;

END_PAR
{ CODE:ST }
lobyte + SHL(TO_UINT(hibyte), 8)

END_MACRO

Whenever the macro name appears in the source code, it is replaced (along with
the current parameter list, in case of function-like macros) with the macro body.
For example, given the definition of the macroMAKEWORD and the following
Structured Text code fragment:
w := MAKEWORD(b1, b2);

the macro pre-processor expands it to
w := b1 + SHL(TO_UINT(b2), 8);

Pointers

Description
Pointers are special variables which act as a reference to another variable (the
pointed variable). The value of a pointer is, in fact, the address of the pointed
variable; in order to access the data stored at the address pointed to, pointers can
be dereferenced.

Pointer declaration requires the same syntax used in variable declaration, where
the type name is the type name of the pointed variable preceded by a@ sign:
VAR

<pointer name> : @<pointed variable type name>;
END_VAR

9MA10256.04 299

Language Reference

For example, the declaration of a pointer to a REAL variable shall be as follows:
VAR

px : @REAL;
END_VAR

A pointer can be assigned with another pointer or with an address. A special
operator, ADR, is available to retrieve the address of a variable.
px := py; (* px and py are pointers to REAL (that is,
variables of type @REAL) *)
px := ADR(x) (* x is a variable of type REAL *)
px := ?x (* ? is an alternative notation for ADR *)

The@ operator is used to dereference a pointer, hence to access the pointed
variable.
px := ADR(x);
@px := 3.141592; (* the approximate value of pi is assigned
to x *)
pn := ADR(n);
n := @pn + 1; (* n is incremented by 1 *)

Be aware that careless use of pointers is a potential source of serious
programming errors that, in a runtime environment, can have an undesirable
effect on the state of the controller and/or your machine or process.

Use of PVOID type
Beware that the pointer type and the pointed variable type must be of the same
type; else an error message is raised when compiling. To avoid type mismatching
you can use PVOID type as pointer type, this way the pointed type will be always
accepted.

Waiting Statement

Description
FREE Studio Plus implements a WAITING statement that can be used in ST code
as following example:
...
WAITING <condition> DO

<code to be executed waiting for condition becomes true>
END_WAITING;
...

Until the condition is not verified, the code is executed (not as in a loop cycle but
returning to caller in every execution).

The WAITING statement can be used only if the associated project option is
enabled. For more details, refer to Code Generation, page 102.

300 9MA10256.04

Language Reference

Errors Reference

Compile Time Error Messages

Error code Short description Explanation

A4097 Object not found The object indicated (variable or function block) has not been defined in the
application.

A4098 Unsupported data type The size (in bits) requested by the indicated data type is not supported by
the target system.

A4099 Auto vars space exhausted The total allocation space requested by all local variables exceeds the space
available on the target system.

A4100 Retentive vars space exhausted The total allocation space requested by all local retentive variables exceeds
the space available on the target system.

A4101 Bit vars space exhausted The total allocation space requested by all local bit (boolean) variables
exceeds the space available on the target system.

A4102 Invalid index in data block The variable indicated is associated with an index that is not available in the
relative data block.

A4103 Data block not found The variable indicated is associated with a data block that does not exist (is
not defined) in the target system.

A4104 Code space exhausted The total size of code used for POU (programs, functions and function
blocks) exceed the space available on the target system.

A4105 Invalid bit offset The variable indicated is associated with a bit index that is not available in
the relative data block.

A4106 Image variable requested Error code superseded.

A4107 Target function not found The function indicated is not available on the target system.

A4108 Base object not found The indicated instance refers to a function block definition non defined.

A4109 Invalid base object type The indicated variable is associated with a data type (including function
block definition) that is not defined.

A4110 Invalid data type The data type used in the variable definition does not exist.

A4111 Invalid operand type The operand type is not allowed for the current operator.

A4112 Function block shares global data and is used
by more tasks

The indicated function block is called by more than one task but uses global
variables with process image. For this reason, the compiler is not able to
refer to the proper image variable for each instance of the function block.

A4113 Temporary variables allocation error Internal compiler error.

A4114 Embedded functions do not support arrays as
input variables

-

A4115 Too many parameters input to embedded
function

-

A4116 Incremental build failed, perform a full build
command

-

A4117 Less than 10% of free data -

A4118 Less than 10% of free retain data -

A4119 Less than 10% of free bit data -

A4120 Variable exceeds data block space -

A4121 Element not found -

A4122 Invalid bit mapped type Bit mapped variables must be of type BOOL

A4123 Invalid access to private member -

A4124 Invalid datablock type for bit mapping -

A4126 Invalid label specification -

A4127 Not a function Invalid function specification

A4128 Invalid bit mapping index -

A4129 Not a structured type -

9MA10256.04 301

Error code Short description Explanation

A4130 Not a function block instance -

A4131 Incompatible external declaration -

A4132 Label not found -

A4133 Not a variable -

A4134 Index exceeds array size Index value is out of the array range

A4135 Invalid index data type -

A4136 Missing index(es) -

A4137 Function block instance required -

A4138 Simple variable required -

A4139 Too many indexes -

A4140 Not a structure instance -

A4141 Not an array -

A4142 Invalid symbol specification -

A4143 Not a pointer -

A4144 Double pointer indirection not allowed -

A4145 To be implemented -

A4146 Bit datatype not allowed -

A4147 Unable to calculate variable offset -

A4148 Complex variables cannot have process
image

-

A4149 Cannot use directly represented variables
with process image in function blocks (not
implemented)

-

A4150 Function block instance not allowed -

A4151 Structure not allowed -

A4152 16-bit variables must be aligned to a 16-bit
boundary

-

A4153 32-bit variables must be aligned to a 32-bit
boundary

-

A4154 Temporary string variable allocation error.
Instruction shall be split.

-

A4155 Ext/aux auto vars space exhausted -

A4156 Ambiguous enum value, <enum># prefix
required

-

A4157 Invalid init element -

A4158 Invalid target function table entry -

A4159 Invalid bit access syntax -

A4160 Invalid bit string type Bit access allowed only on bit string data types (BYTE, WORD, DWORD)

A4161 Invalid bit index -

A4162 Object is not a method -

A4163 Method not found -

A4164 Invalid usage of THIS/SUPER -

A4165 Parent function block not found -

A4166 Variable name already used into a parent -

A4167 Erroneus method override Return value or input variables mismatch

A4168 Erroneus local method override Override of a parent method belonging to a locally implemented interface

A4169 Not an interface instance -

302 9MA10256.04

Error code Short description Explanation

A4170 Not a reference -

A4171 Error dereferencing interfaces Interfaces can not be dereferenced from references/ pointers

A4172 Relocation table generation failure -

A4173 Bit mapped variables cannot be arrays -

A4174 64-bit variables must be aligned to a 64-bit
boundary

On some architecture is required that 64-bit variables are mapped on
memory address alinged to 64-bit

A4175 Enum base type must be DINT -

C0001 Parser not initialized Internal compiler error.

C0002 Invalid token Invalid word for the current language syntax

C0003 Invalid file specification Internal compiler error.

C0004 Cannot open file The indicated file cannot be opened due to a file system error or to a missing
source file.

C0005 Parser table error Internal compiler error.

C0006 Parser non specified Internal compiler error.

C0007 Unexpected end of file The indicated file is truncated or the syntax is incomplete.

C0009 Reserved keyword The indicated word cannot be used for declaration purposes because is a
keyword of the language.

C0010 Invalid element The indicated word is not a valid one for the language syntax.

C0011 Aborted by user -

C0032 Too many parameters in macro call -

C0033 Invalid number of parameters in macro call -

C0034 Too many macro calls nested -

C0035 IFDEF directives are not enabled -

C0036 Syntax error in IFDEF condition -

C0037 Recursive IFDEF condition -

C4097 Invalid variable type The data type indicated is not allowed.

C4098 Invalid location prefix The address string of the indicated variable is not correct, '%' missing.

C4099 Invalid location specification The address string of the indicated variable is not correct, the data access
type indication is not 'I', 'Q' or 'M'.

C4100 Invalid location type The address string of the indicated variable is not correct, the data type
indication is not 'X', 'B', 'W', 'D', 'R' or 'L'.

C4101 Invalid location index specification The address string of the indicated variable is not correct, the index is not
correct.

C4102 Duplicate variable name The name of the indicated variable has already been used for some other
project object.

C4103 Only 0 admitted here The compiler uses only arrays zero-index based

C4104 Invalid array dimension The dimension of the array is not indicated in the correct way (for example:
contains invalid characters, negative numbers and so on).

C4105 Constant not initialized Every constant need to have an initial value.

C4106 Invalid string size -

C4107 Initialization exceeding string size -

C4108 Invalid repetition in initialization -

C4109 Invalid data type for initialization -

C4110 Invalid binary file for initialization -

C4112 Duplicate type name -

C4353 Duplicate label The indicated label has already been defined in the current POU (program,
function or function block).

9MA10256.04 303

Error code Short description Explanation

C4354 Constant not admitted The operation indicated does not allow to use constants (typically store or
assign operations).

C4355 Address of explicit constant not defined -

C4356 Maximum number of subscripts exceeded -

C4358 Invalid array base -

C4359 Invalid operand -

C4609 Invalid binary constant A constant value with 2# prefix must contain only binary digits (0 or 1).

C4610 Invalid octal constant A constant value with 8# prefix must contain only octal digits (between 0 and
7).

C4611 Invalid hexadecimal constant A constant value with 16# prefix must contain only hexadecimal digits
(between 0 and 9 and between A and F).

C4612 Invalid decimal constant A decimal constant must contain only digits between 0 and 9, a leading sign
+ or -, a decimal separator '.' Or an exponent indicator 'e' or 'E'.

C4613 Invalid time constant A constant value with t# prefix must contain a time indication in decimal
notation and a time unit between 'ms, 's' or 'm'.

C4614 Invalid constant string -

C4618 Invalid constant wstring -

C4619 Time constant exceedes maximum value -

C4620 LTime constant exceedes maximum value -

C4621 A non-most significant time unit exceede its
range

-

C4622 A non-least significant time unit has a decimal
part

-

C4623 Invalid date constant -

C4624 Invalid Date and Time typed constant -

C4626 Invalid Time of Day typed constant -

C4864 Duplicate function name The indicated function name has already been used for another application
object.

C4865 Invalid function type The data type returned by the indicated function is not correct.

C5120 Duplicate program name The indicated program name has already been used for another application
object.

C5376 Duplicate function block name The indicated function block name has already been used for another
application object.

C5632 Invalid pragma -

C5633 Invalid pragma value -

C5889 Duplicate macro name -

C5890 Duplicate macro parameter name -

C6144 Invalid resource definition: two or more tasks
have the same ID

-

C16385 Invalid init value -

C16386 Empty init value -

C16387 Invalid structure init value Invalid element name in structure init value

C16388 Unexpected token -

C16389 Syntax error -

C16390 Invalid function declaration Function declaration must begin at line one

C16391 Invalid variable init value Initial value must begin on the same line as the variable name

C16392 Invalid description Description exceeded 1024 characters

C16393 Invalid POU name declaration Declared POU name does not match actual POU name

C16394 Missing POU header Missing POU header (e.g.: PROGRAM main)

304 9MA10256.04

Error code Short description Explanation

F1025 Invalid network The indicated FBD or LD network contains a connection error (the errors are
normally indicated by red connections).

F1026 Unconnected pin The indicated block (operator, function, contact or coil) has an unconnected
pin.

F1027 Invalid connection (incomplete, more than a
source and so on)

Internal compiler error.

F1028 More than one network per block The network indicated contains more networks of blocks and variables not
connected between them.

F1029 Ambiguous network evaluation The compiler is not able to find an univocal way to establish the order of
blocks execution.

F1030 Temporary variables allocation error Internal compiler error.

F1031 Inconsistent network The network indicated does not have input or output variables.

F1032 Invalid object connected to power rail -

F1033 Invalid use of pin negation (ADR operator
does not allow negated input)

-

F1034 Invalid use of pin negation (SIZEOF operator
does not allow negated input)

-

F1035 Undefined function block -

F1036 Missing VAR_IN_OUT assignment -

F1037 Unknown function -

F1038 Unavailable default value for function
parameter

-

F1039 Invalid pin -

F1040 Only variables with physical storage can be
assigned to VAR_ IN_OUT

-

G0001 Invalid operand number The number of operands is not correct for the operand or the function
indicated.

G0002 Variable not defined The variable has not been defined in the local or global context.

G0003 Label not defined The label indicated for the JMP operand is not defined in the current POU
(program, function or function block).

G0004 Function block not defined The indicated instance refers to a function block not defined in the whole
project.

G0005 Reference to object not defined The indicated instance refers to an object not defined in the whole project.

G0006 Constant not admitted The operation indicated does not allow to use constants (typically store or
assign operations).

G0007 Code buffer overflow The total size of code used for POU (programs, functions and function
blocks) exceed the space available on the target system.

G0008 Invalid access to variable The access made to the indicated variable is not allowed. An attempt to write
a read-only variable or to read a write-only variable has been made.

G0009 Program not found The indicated program does not exist in the current project.

G0010 Program already assigned to a task The indicated program has been assigned to more than one task of the
target system.

G0011 Cannot allocate code buffer There is not enough memory on the PC to create the image of the code of
the target system.

G0012 Function not defined The indicated function does not exist in the current project.

G0013 Cyclic declaration of function blocks The indicated function block call itself directly or by using other functions.

G0014 Incompatible external declaration The external variable declaration of the current function block or function,
does not match with the global variable definition it refers to (the one with the
same name). Typically is the case of a type mismatch.

G0015 Accumulator extension -

G0016 External variable not found The external variable does not refer to any of the global variables of the
project (for example: there is not a global variable with the same name).

G0017 Program is not assigned to a task The indicated program has not been assigned to a task in the target system.

9MA10256.04 305

Error code Short description Explanation

G0018 Task not found in resources The indicated task is not defined in the target system.

G0019 No task defined for the application There aren't task definitions for the target system. The target definition file (*.
TAR) is missing or incomplete. Contact the target system vendor.

G0020 Far data allowed only for load/ store
operations in PROGRAMs

Huge memory access is not allowed for function blocks, only for programs
(error code valid only for some target system with NEAR/FAR data access).

G0021 Invalid processor type The processor indicated into the target definition file (*.TAR) is not correct or
is not supported by the compiler.

G0022 Function block with process image variables
cannot be used in event tasks

-

G0023 Process image variables cannot be used in
event tasks

-

G0024 Accumulator undefined -

G0025 Invalid index -

G0026 Only constant index allowed -

G0027 Illegal reference to the address of a register -

G0028 Less than 10% of free code -

G0029 Index exceeds array size -

G0030 Access to array as scalar - assuming index 0 -

G0031 Number of indexes not matching the var size -

G0032 Multidimensional variables not supported -

G0033 Invalid data type -

G0034 Invalid operand type -

G0035 Assembler error -

G0036 Aborted by user -

G0037 Element not defined -

G0038 Cyclic declaration of structures -

G0039 Cyclic declaration of typedefs -

G0040 Unresolved definition of typedef -

G0041 Exceeding dimensions in typedef -

G0042 Unable to allocate compiler internal data -

G0043 CODE GENERATOR INTERNAL ERROR -

G0044 Real data not supported -

G0045 Long real data not supported -

G0046 Long data not supported -

G0047 Operation not implemented -

G0048 Invalid operator -

G0049 Invalid operator value -

G0050 Unbalanced parentheses -

G0051 Data conversion -

G0052 To be implemented -

G0053 Invalid index data type -

G0054 Negation without condition -

G0055 Operation not allowed on boolean -

G0056 Negation of a non-boolean operand -

G0057 Boolean operand required -

G0058 Floating point parameter not allowed -

306 9MA10256.04

Error code Short description Explanation

G0059 Operand extension -

G0060 Division by zero -

G0061 Comparison between different types -

G0062 Function block must be instantiated -

G0063 String operand not allowed -

G0064 Operation not allowed on pointers -

G0065 Destination may be too small to store current
result

-

G0066 Cannot use a function block containing
external variables with process image in more
than one task

-

G0067 Cannot load the address of an explicit
constant

-

G0068 Writing a real value into an integer variable -

G0069 Cannot use complex variables in functions.
Not implemented

-

G0070 Signed/unsigned mismatch -

G0071 Conversion data types mismatch, possible
loss of data

-

G0072 Implicit type conversion of boolean to integer -

G0073 Implicit type conversion of boolean to real -

G0074 Implicit type conversion of integer to boolean -

G0075 Implicit type conversion of integer to real -

G0076 Implicit type conversion of real to boolean -

G0077 Implicit type conversion of real to integer -

G0078 Arithmetic operations require numerical
operands

-

G0079 Bitwise logical operations require bitstring/
integer operands

-

G0080 Comparison operations require elementary
(that is, not user-defined) operands

-

G0081 Cannot take the address of a bit variable -

G0082 Writing a signed value into an unsigned
variable

-

G0083 Writing an unsigned value into a signed
variable

-

G0084 Implicit conversion from single to double
precision

-

G0085 Implicit conversion from double to single
precision

-

G0086 Function parameter extension -

G0087 Casting to the same type has no effects -

G0088 Function parameters wrong number -

G0089 Embedded target function not found -

G0090 Recursive type declaration -

G0091 Wrong initial value. Signed/unsigned
mismatch

-

G0092 Wrong initial value. Conversion data types
mismatch, possible loss of data

-

G0093 String will be truncated -

G0094 Init value type mismatch -

9MA10256.04 307

Error code Short description Explanation

G0095 Improper init value -

G0096 Init value object not found -

G0097 Invalid assignment to pointer -

G0098 Unsupported data type -

G0099 Variable bit access not supported -

G0100 Symbolic initialization of constants not
supported

-

G0101 Type mismatch in assignment -

G0102 Array size mismatch in assignment -

G0103 Copy of array or structures not supported -

G0104 Data size mismatch in assignment -

G0105 Copy of data having a large size (see
threshold in project options)

-

G0106 Object oriented features not supported -

G0107 Recursive usage of function -

G0108 Recursive usage of method -

G0109 Recursive usage of function block -

G0110 Parent function block not found (with
EXTENDS)

-

G0111 Recursive inheritance (with EXTENDS) -

G0112 Object oriented programming not supported
by target system

-

G0113 Undefined interface (with IMPLEMENTS) -

G0114 Incomplete interface implementation (with
IMPLEMENTS)

-

G0115 Method prototype differs from interface
definition

-

G0116 Redundant interface implementation -

G0117 Function block does not implements interface -

G0118 Copy between different interfaces -

G0119 Parent interface not found -

G0120 Recursive interface hierarchy (EXTENDS) -

G0121 Method redefinition in interface hierarchy
(EXTENDS)

-

G0122 Invalid operands for query interface operator
?=

-

G0123 Invalid assignment to reference -

G0124 Can not load reference/address of an
interface

-

G0125 Invalid operation on reference -

G0126 Improper assignment to a reference, different
type

-

G0127 Usage of deprecated pointer initialization, use
NULL instead

-

G0128 Comparison between pointer and non-pointer -

G0129 Comparison between reference and non-
reference

-

G0130 Operation between pointer and non-pointer -

G0131 Check for division by zero unsupported for
LREAL type

-

308 9MA10256.04

Error code Short description Explanation

G0132 Mismatch in ENUM data types -

G0133 Operation between ENUM and generic
constant

-

G0134 Operation requires explicit type cast -

G0135 Operation required an implicit type cast -

G0136 Type cast is not allowed -

G0137 Initialization of constants with addresses is
not allowed

-

G0138 Illegal conversion to pointer -

G0139 Array dimension constant not found -

G0140 Invalid constant for array size -

G0141 Invalid pointer arithmetic operation -

G0142 VAR_IN_OUT cannot be a reference -

G0143 VAR_IN_OUT can be assigned to other VAR_
IN_OUT only

-

G0144 Only variables can be assigned to VAR_IN_
OUT

-

G0145 Invalid MOVE operation -

G0146 Found invalid instruction in patch code, could
not set breakpoint/ trigger

-

G0147 Variable bit access with variable index not
supported

-

G0148 Invalid array size indication -

G0149 Invalid operand on function call -

G0150 Argument types mismatch on function call -

G0151 Operand types mismatch on function
invocation

-

G0152 Time parameter not allowed -

G0153 Converting a time into a number -

G0154 Converting a time into a string -

G0155 Converting a time into a bool -

G0156 Converting a number into a time -

G0157 Converting a string into a time -

G0158 Implicit conversion of Time to LTime -

G0159 Cannot convert an LTime into a Time implicitly -

G0160 Invalid operation with a time typed operand -

G0161 Operation not allowed on Time operand -

G0162 Destination type not supported for Time type -

G0163 Destination type not supported for LTime type -

G0164 Implicit conversion of DATE to LDATE -

G0165 Destination type not supported for DATE type -

G0166 Destination type not supported for LDATE
type

-

G0167 Cannot convert an LDATE into a DATE
implicitly

-

G0168 Converting a date into a number -

G0169 Converting a date into a string -

G0170 Converting a date into a bool -

9MA10256.04 309

Error code Short description Explanation

G0171 Converting a number into a date type -

G0172 Operation not allowed on date operand -

G0173 Operation between a date type operand and
a non date type operand is not allowed

-

G0174 Operation between different date type
operands (Date and LDate) is not allowed

-

G0175 Operation not allowed on TIME or LTIME -

G0176 Operation not allowed on DATE or LDATE -

G0177 Cannot convert a DATE_AND_ TIME into a
DATE implicitly

-

G0178 Cannot convert a DATE_AND_ TIME into an
LDATE implicitly

-

G0179 Cannot convert an LDATE_AND_ TIME into a
DATE implicitly

-

G0180 Cannot convert an LDATE_AND_ TIME into
an LDATE implicitly

-

G0181 Implicit conversion of DATE_AND_ TIME to
LDATE_AND_TIME

-

G0182 Cannot convert an LDATE_AND_ TIME into a
DATE_AND_TIME implicitly

-

G0183 Operation between a date and time type
operand and a non date and time type is not
allowed

-

G0184 Operation between different date and time
type operands (DT and LDT) is not allowed

-

G0185 Operation not allowed on date and time type
operand

-

G0186 Operation not allowed on DATE_ AND_TIME
or LDATE_AND_TIME

-

G0187 Converting a date and time type into a string -

G0188 Converting a DATE into a DATE_ AND_TIME -

G0189 Converting a LDATE into a DATE_ AND_
TIME

-

G0190 Converting a DATE into a LDATE_ AND_
TIME

-

G0191 Converting a LDATE into a LDATE_ AND_
TIME

-

G0192 Destination type not supported for DATE_
AND_TIME type

-

G0193 Destination type not supported for LDATE_
AND_TIME type

-

G0194 Date typed parameter not allowed -

G0195 Date and time typed parameter not allowed -

G0196 Converting a floating point into a time -

G0197 Converting a bool into a time type -

G0198 Converting a bool into a date and time type -

G0199 Converting a bool into a date and time type -

G0200 Converting a string into a date and time type -

G0201 Converting a number into a date and time
type

-

G0202 Converting a date type into a time type -

G0203 Converting a date and time type into a time
type

-

310 9MA10256.04

Error code Short description Explanation

G0204 Converting a floating point into a date type -

G0205 Converting a string into a date type -

G0206 Converting a bool into a date type -

G0207 Converting a time type into a date type -

G0208 Converting a time type into a date and time
type

-

G0209 Converting a date type into a floating point -

G0210 Converting a date and time type into a floating
point

-

G0211 Converting a date and time type into a
number

-

G0212 Converting a date and time type into a bool -

G0213 Converting a String into WString -

G0214 Converting a WString into String -

G0215 Converting a string into a bool -

G0216 Operation not allowed on TIME_ OF_DAY or
LTIME_OF_DAY

-

G0217 Cannot convert an DATE_AND_ TIME into a
TIME_OF_DAY implicitly

-

G0218 Cannot convert an DATE_AND_ TIME into an
LTIME_OF_DAY implicitly

-

G0219 Cannot convert an LDATE_AND_ TIME into
an TIME_OF_DAY implicitly

-

G0220 Cannot convert an LDATE_AND_ TIME into
an LTIME_OF_DAY implicitly

-

G0221 Implicit conversion of TIME_OF_ DAY to
LTIME_OF_DAY

-

G0222 Destination type not supported for TIME_OF_
DAY type

-

G0223 Destination type not supported for LTIME_
OF_DAY type

-

G0224 Cannot convert an LTIME_OF_DAY into a
TIME_OF_DAY implicitly

-

G0225 Operation between a time of day operand and
a non time of day operand is not allowed

-

G0226 Operation between different time of day type
operands (TOD and LTOD) is not allowed

-

G0227 Operation not allowed on time of day type
operand

-

G0228 Time of day typed parameter not allowed -

G0229 Converting a time of day type into a bool -

G0230 Converting a time of day type into a floating
point

-

G0231 Converting a time of day type into a number -

G0232 Converting a time of day type into a string -

G0233 Converting a time of day type into a time type -

G0234 Converting a time of day type into a date type -

G0235 Converting a time of day type into a date and
time type

-

G0236 Converting a bool into a time of day type -

G0237 Converting a number into a time of day type -

9MA10256.04 311

Error code Short description Explanation

G0238 Converting a floating point into a time of day
type

-

G0239 Converting a string into a time of day type -

G0240 Converting a time type into a time of day type -

G0241 Converting a date type into a time of day type -

G0242 Zero length string not allowed -

G0243 Operation not allowed on references -

G0244 Different array/string size -

G0245 Complex parameter not supported -

G0246 Does not support bool accumulator -

G0247 Does not support float accumulator -

G0248 Time typed accumulator not supported -

G0249 Date typed accumulator not supported -

G0250 Date and time typed accumulator not
supported

-

G0251 Time of day typed accumulator not supported -

G0252 String typed accumulator not supported -

G0253 Converting a number into a String -

G0254 Converting a String into a number -

G0255 Operation between floating point and integer -

G0256 Operation between signed and unsigned
variables

-

G0257 Converting %s to REAL -

G0258 Converting %s to LREAL -

G0259 Converting a number into a WString -

G0260 Converting a WString into a number -

G0261 Converting a WString into a bool -

G0262 Does not support a non boolean condition -

G0263 Operation between a string type and a non
string type is not allowed

-

G0264 Operation between different time typed
operands (TIME and LTIME) is not allowed

-

G0265 Branch higher of 1 MB -

G0266 Branch higher of 16 MB -

G0267 Branch higher of 32 MB -

G0268 Converting %s to the type of the second
operand

-

G0269 Converting %s to the type of the first operand -

G0270 Operation between boolean and integer -

G0271 Invalid operation on different pointed types -

G0272 Operation on different pointed types -

G0273 Implicit conversion of type \’%s\’ to type \’%s\’
is not admitted

-

G0274 Invalid conversion of type \’%s\’ to type \’%s\’ -

G0275 Loss of precision while converting a %s into
%s

-

312 9MA10256.04

Error code Short description Explanation

G0276 Invalid operation on operands with different
granularity

-

G0277 Invalid pointer operation -

G0278 Invalid string length indication -

G0279 String length constant not found -

G0280 Invalid constant for string length -

G0281 Operation between array and scalar variables -

G0282 Extended Unicode characters are not
enabled

-

G0283 Invalid number of inout parameters -

G0284 A variable cannot be assigned to a VAR_IN_
OUT with a different type

-

G0285 All inputs shall be of the same type -

G0286 VAR_IN_OUT on functions not implemented -

G8193 Type definition of unknown data type -

G8194 Type definition has exceeding array
dimensions

-

G8195 Cyclic definition of data type -

G8196 Double pointers are not supported -

G8197 No enumerative elements -

G8199 Invalid or undefined initialization constant -

G8200 Global variable and ENUM field with the
same name

-

G10241 Too many initializers for variable -

G10242 Too less initializers for variable -

G10243 Constant without init values -

L1153 Unconnected pin -

L1154 Jump to non existing label -

L1155 Invalid operand -

L1156 Undefined contact -

L1157 Undefined variable -

L1158 Undefined constant -

L1159 Undefined coil -

L1160 Undefined jump destination -

L1161 Undefined expression -

L1162 Assignment not admitted in expressions -

L1163 Comments not admitted in expressions -

L1164 Undefined function block -

L1165 VAR_IN_OUT must be assigned in function
block invocation

-

L1166 Unknown function -

L1167 Unavailable default value for function
parameter

-

L1168 VAR_IN_OUT parameters must be assigned -

L1169 Only variables can be assigned to VAR_IN_
OUT parameters

-

P2048 PostBuild error -

P2049 Symbol table file not created -

9MA10256.04 313

Error code Short description Explanation

P2051 Cannot create directory -

P2052 Cannot open source project -

P2053 Save project error -

P2054 Generic file error -

P2055 Cannot copy file -

P2056 Cannot save file -

P2057 Object already exist in project -

P2058 Cannot open library file -

P2059 Listing file not created -

P2060 Cannot create PLC application binary file -

P2061 Cannot open template project -

P2062 Support for processor is not available -

P2063 Less than 10% of free code -

P2064 Less than 10% of free data -

P2065 Less than 10% of free retain data -

P2066 Less than 10% of free bit data -

P2067 Task not found in resources -

P2068 No task defined for the application -

P2069 Project is in the old PPJ format. It will be
saved in the actual PPJX format

-

P2070 Cannot open auxiliary source file -

P2071 Cannot read file -

P2072 Application name is longer than 10
characters: only the first 10 characters will be
downloaded into the target

-

P2073 Downloadable source code file is not
password-protected

-

P2074 Downloadable PLC application binary file not
created

-

P2075 Less than 10% of free ext/aux data -

P2076 Project private copy of this library was
missing and has been replaced with a new
copy of the library (from the original path)

-

P2077 Cannot load library! Project private copy of
this library was missing and the original path
to the library is invalid: library has been
dropped

-

P2079 Debug symbols package (for following
download to the target device) not created

-

P2080 Source code package (for following download
to the target device) not created

-

P2081 Invalid task definition -

P2083 Invalid or incoherent task period -

P2084 Broken library link -

P2085 Missing external aux source -

P2086 Object is already defined in the project and
will be unloaded

-

S1281 Generic ST error -

S1282 Too many expressions nested -

S1283 No iteration to exit from -

S1284 Missing END_IF -

314 9MA10256.04

Error code Short description Explanation

S1285 Invalid ST statement -

S1286 Invalid assignment -

S1287 Missing “;” -

S1288 Invalid expression -

S1289 Invalid expression or missing DO -

S1290 Missing END_WHILE -

S1291 Missing END_FOR -

S1292 Missing END_REPEAT -

S1293 Invalid expression or missing THEN -

S1294 Invalid expression or missing TO -

S1295 Invalid expression or missing BY -

S1296 Invalid statement or missing UNTIL -

S1297 Invalid assignment, := expected -

S1298 Invalid address expression -

S1299 Invalid size expression -

S1300 Function return value ignored -

S1301 Invalid parameter passing -

S1302 Function parameter not defined -

S1303 Useless expression -

S1304 Unbalanced parentheses -

S1305 Unknown function -

S1306 Invalid function parameter(s) specification -

S1307 Function parameter does not exist -

S1308 Multiple assignment not allowed (in
accordance with IEC 61131-3)

-

S1309 ST preprocessor buffer overflow -

S1310 Function block invocation of a non-function
block instance

-

S1311 Missing END_WAITING -

S1312 Syntax error -

S1313 Invalid range in CASE definition -

S1314 Value overlap in CASE definition -

S1315 Exceeding number of parameters -

S1316 Wrong number of function parameters -

S1317 Duplicated function parameter -

S1318 Improper use of THIS/SUPER -

S1319 Improper usage of query interface operator ?
=

-

S1320 Invalid reference to expression -

S1321 Missing IL block end marker ({IL}) -

S1322 Function in/out variable doesn’t exist -

S1323 VAR_IN_OUT must be assigned in function
block invocation

-

S1324 Complex type parameters cannot have
default value

-

S1325 Invocation of an unexisting function block -

9MA10256.04 315

Error code Short description Explanation

S1326 Missing inout parameter -

S1537 Generic SFC error -

S1538 Initial step missing -

S1539 Output connection missing -

S1540 The output pin must be connected to a
transition

-

S1541 Every output pin of a transition must be
connected to a step/jump block

-

S1542 Transition expected -

S1543 Step or jump expected -

S1544 Could not find the associate program code -

S1545 Could not find the condition code -

S1546 Unknown-type transition -

S1547 Invalid jump destination -

S1548 Duplicates action. Same SFC action cannot
be used in more than one step

-

S1549 Unconnected block in SFC schema -

T8193 Communication timeout The communication with the target system failed because there is no answer
from the system itself. More common causes of this problem are wrong
cable connection, invalid target address in communication settings, invalid
settings of communication parameters (such as baud rate), target system
failure.

T8194 Incompatible target version Error code not used.

T8195 Invalid code file The target system image file (with IMG extension) is invalid or corrupted. Try
to upload and create new version of the image file using the
"Communication Upload image file" menu option.

T8196 Invalid data block index The image file (with IMG extension) contains a data block that has an index
greater than the largest index supported by the target system. Try to upload
and create new version of the image file using the "Communication Upload
image file" menu option. If the problem persist, contact the target system
vendor.

T8197 Invalid target information address Internal compiler error.

T8198 Flash erase failure The target system was not able to complete the flash erasure procedure.
Contact the target system vendor for details.

T8199 Code write failure The target system was not able to complete the flash programming
procedure. Contact the target system vendor for details.

T8200 Communication device unavailable The compiler tried to communicate with the target system but the
communication channel is not available. If the problem persist and there are
other applications that communicate with the target system, deactivate the
communication on the other applications and try again.

T8201 Invalid function index Internal compiler error.

T8202 Invalid database information address The address of the parameter's database memory area of the target system
is not correct or valid. Try to upload and create new version of the image file
using the "Communication Upload image file" menu option.

T8203 Invalid target information -

T8204 Rebuild required -

T8205 Invalid task -

T8206 Application-level communication protocol
error: PLC run-time was not able to
understand the received command

-

T8207 Not implemented -

T8209 No room for source file on the target -

T8210 Error while uploading source code from target
device

-

T8211 No room for debug symbols on the target -

316 9MA10256.04

Error code Short description Explanation

T8212 Memory read error -

T8213 Memory write error -

T8214 Not enough space available on the target
device for the PLC application binary

-

T8215 Generic communication failure -

X4097 Recursive POU -

X4098 Recursive data type -

9MA10256.04 317

Display
What’s in This Part

The Display Tab .. 319
Managing Display Elements.. 327
File for Target Description ... 380
Functions and Function Blocks for HMI .. 385

318 9MA10256.04

The Display Tab
What’s in This Chapter

Overview of the Display Window.. 319
Menu Bar.. 322
Toolbar ... 323

Overview of the Display Window

Purpose
Display is used to create user interfaces for embedded systems based on HMI
runtime.

It allows you to implement graphical interfaces in a visual way. The created pages
are viewed in Display as they appear on the final target device.

Thanks to their multi-page structure, Display can support HMI (human machine
interface) applications with an arbitrary number of pages.

It is equipped with several tools to realize complex applications and it interfaces
directly to the PLC IEC1131 Programming compiler for managing the variables
which are defined in the target device PLC application.

Display Layout
The following illustration presents the default Display window:

Item Description

1 Toolbars This toolbar shows the tools in form of icons.

For more information, refer to Toolbars, page 323.

2 Editor window This window allows you to edit the content of the current selection in HMI Project window.

3 HMI Properties window Shows the properties and events of the selected object:

Alarms

Preprocessing Regul and Control completed.
Preprocessing Application completed.
Preprocessing Communication completed.
Preprocessing Pumping completed.
Preprocessing display completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

File HelpWindowPageProjectViewEdit

My Project
Properties

Global procedures
Resources [BaseLanguage]

Global variables
Messages

Pages
Page1

HMI Project

Configuration Programming Display Commissioning

Ready EDIT MODE NOT CONNECTED....

HMI Actions

Local actions Global actions
Key

Enter
Up
Down

Edit
PrevField
NextField

Action

HMI Properties

Properties Events

CharDimX

CharDimY

Font

Background color

Text color

Page border

Title bar

6

8

EWP2_6X8

No

No

Flat

Doc All

Caption

Appearance

Current profile: Remote and local Configure profiles

Target vars

HMI Vars and Parameters

sysBacklight

sysMSK
sysLocalLeds
sysLangID
sysKeyPressed
sysCurrentSelectedPosition

sysTimer
sysVer

LocalParameters

C:\My Project\My Project.plcprj

5 6 74

2 3

Free Studio Plus

1

9MA10256.04 319

The Display Tab

Item Description

• Properties: the properties of the selected page or control are displayed in the form of
a table and can be modified in the right column.

• Events: the events of the currently selected object are displayed in the form of a table
and each event can be associated with local or variable procedures in the right
column.

• Doc: the description of the currently selected object is displayed in the form of a table
and it can be modified (or created if it does not exist) in the right column.

4 HMI Project window This window includes:
• Project: shows the project tree and the objects that compose it.

Each page contains the list of:
◦ Local variables (visible and usable only in the page where they are declared),
◦ Local procedures (which can be started only from the page where they are

implemented).
Moreover there are the nodes of:
◦ Asynchronous messages,
◦ Global variables (visible and usable from whatever page),
◦ Global procedures which you can start from whatever page.

• Resources: shows the project resources (fonts, bitmaps, string tables, enumerated
data types, image lists, and sets).

5 Output window This tool window shows the messages relating to the development of the project.

6 HMI Vars and Parameters
window

This window is composed of two tabs.

One tab contains the list of the available variables, and the other tab contains the list of the
local parameters.

7 HMI Actions window This window shows in tabular form the actions associated with the buttons of the target
device (either according to the page currently displayed or according to the pages). Actions
can be changed in the right columns.

Set of Controls
Each page may contain an arbitrary number of defined graphic controls.

There are two classes of graphic controls:
• Static controls: drawing tools such as lines, rectangles, and figures.
• Dynamic controls: multi-layered objects, which enable data, image display,

and user interaction (strings, boxes, buttons, progress, custom controls,
charts, and trends).

Display is an open system allowing the implementation of custom controls which
may be included in the target device system.

320 9MA10256.04

The Display Tab

Multi-pages Structure
Display supports the definition of an arbitrary number of pages. Each page may
contain links to other pages so that the whole project takes a tree structure:

Resources Management
The properties of the controls in the page are not statically defined in the project
code, but they can be managed separately as resources.

Resources include for example:
• Bitmaps, page 376
• Enumeratives, page 378
• Fonts, page 376
• Sets, page 378
• String table, page 377

Display allows you to import bitmap files directly from the Windows-formatted file
(*.bmp, *.gif, *.emf, *.jpg, *.ico, and so on).

For more information about Resources, refer to Resources, page 376.

Variables and Procedures
Display enables the implementation of several procedures in the ST language.
Through these procedures, you can customize the behavior of the logical system
interface.

HMI Project

My Project
Properties

Alarms
AnalogInputs
AnalogOutputs
BiosCfg485
BiosCfgETH
Circuit1
Circuit2
ComprCir1
ComprCir2
Dayly_Consumptions
DefrostCir1

FansCir1
FansCir2

DefrostCir2
DigitalInputs
DigitalOutputs

Pages

HMI Project

My Project
Properties
Pages
Messages
Global variables
Global procedures

Bitmaps
Enumeratives
Expressions
Font styles
Fonts
Image lists
Sets
String table

Resources [BaseLanguage]

9MA10256.04 321

The Display Tab

Example of variables:

Example of procedures:

For more information about variables and procedures, refer to Declaration of
Variables, page 370.

Run-time Functionalities
Overview of the run-time functionalities:

• Managing asynchronous messages: Display supports the issue of
asynchronous messages whatever their complexity. You can customize
management of issue messages by typing a ST procedure.
For more information about managing asynchronous messages, refer to
Asynchronous Messages, page 327.

• Multilingual support: Display allows you to modify strings, resources, and
enumerations language without recompiling nor reloading the application.
For more information about Multilingual support, refer to Language Selection,
page 338.

• Events management: Display applications are structured in events; you may
seize the available events and manage them through ST-coded procedures.
For more information about events management, Events, page 373.

Menu Bar

Overview
The menu bar of Display tab is composed of these menus:

• File, page 28
• Edit, page 27

1
2
3
4
5
6
7
8
9

InsertedPassword
ReqLevVis
AccessLevelPasswor
i USINT
dummy
ADDR_LEV0_PASSW
PASSWORD_DISABL
WiredLev3Password
WIRED_ELIWELL_PA

WORD
BOOL
UINT

USINT
UINT
UINT
UINT
UINT

No

No
No
[0..3]

No
No
No
No
No

16966
0
0
1603

Name Array Init value DescriptionType

Local variables - [PasswordInsert] OnLoadScript - [PasswordInsert]

Local variables - [PasswordInsert] OnLoadScript - [PasswordInsert]

InsertedPassword := 0;

retUINT := Video_GetParam(0, ADDR_PSW3, 0, ?AccessLevelPasswords[1], tyUINT);
retUINT := Video_GetParam(0, ADDR_PSW2, 0, ?AccessLevelPasswords[1], tyUINT);
retUINT := Video_GetParam(0, ADDR_PSW1, 0, ?AccessLevelPasswords[1], tyUINT);

IF (PageAccessHandshake = PAGE_ACCESS_REQUESTED) THEN (* Calling page is requesting a permission access
*)

ELSE (* No permission request; user manually selected login page *)

IF (PermLevelCurr >= PermLevelReq) THEN

END_IF;

END_IF;

PageAccessHandshake := PAGE_ACCESS_GAINED; (* Permission gained *)

PageAccessHandshake := PAGE_ACCESS_DENIED;

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

322 9MA10256.04

The Display Tab

• View, page 33
• Project, page 30
• Page, page 29
• Variables, page 32
• Window, page 34
• Help, page 28

Toolbar

Introduction
The toolbar appears at the top of the FREE Studio Plus window to provide access
to frequently used functions.

For generalities of toolbars, refer to Toolbars description, page 34.

HMI Page Toolbar
The HMI Page toolbar has the following buttons:

Icon Description

Grid

Show or Hide the grid

Zoom In

Zoom in the current page

Zoom Out

Zoom out the current page

Insert static

Insert a static object, page 343

Insert new edit

Insert a new edit box, page 348

Insert new text box

Reserved

Insert new combo box

Reserved

Insert line

Insert a new line, page 343

Insert rectangle

Insert a new rectangle, page 344

Insert image

Insert a new image object, page 345

Insert animation

Insert a new animation object, page 347

9MA10256.04 323

The Display Tab

Icon Description

Insert new button

Insert a new button object, page 353

Insert new check box

Insert a new check box, page 344

Insert new progress

Insert a new progress bar, page 357

New custom control

Reserved

Insert new chart

Reserved

Insert new trend

Reserved

Align left

Align the selected objects to the left

Align right

Align the selected objects to the right

Align top

Align the selected objects to the top

Align bottom

Align the selected objects to the bottom

Make same width

Make objects of the same width

Make same height

Make objects of the same height

Space across

Evenly space the selected objects horizontally

Space down

Evenly space the selected objects vertically

Send to back

Send to back

Bring to front

Bring to front

HMI Project Toolbar
The HMI Project toolbar has the following buttons:

324 9MA10256.04

The Display Tab

Icon Description

New record

Insert a new record

Remove record

Remove the current record

Move up

Moves the current record one position up

Move down

Moves the current record one position down

Parameters management

Parameters management

Refresh parameters

Refresh parameters

Template management

Template management

New page

Insert a new page object

New event

Insert a new event object

New action

Insert a new action in list

Compile HMI project

Compile HMI project and generate IEC code

Simulation mode

Simulation mode

Download HMI code

Download the compiled HMI project

Generate RSM

Generate redistributable source module

Generate Doc.

Generate auto documentation

Open compiled project to resolve compile errors

Open compiled project to resolve compile errors

HMI Profiles Toolbar
The HMI Profiles toolbar has the following buttons:

9MA10256.04 325

The Display Tab

Icon Description

- Current profile

Select the active project profile (must be activated in Configure profiles)

Configure profiles

Choose active project profiles (Remote and local or Local only)

326 9MA10256.04

The Display Tab

Managing Display Elements
What’s in This Chapter

Managing Pages ... 327
Organization of Created Pages... 337
Insertion of Controls .. 342
Editing Control Properties .. 358
Declaration of Variables ... 370
Using Advanced Features.. 373

Managing Pages

Pages Overview

Navigating between Pages
Display manages the creation of pages for a specific application.

It is composed of several pages where you can arbitrarily arrange the controls.

You have to specify the start page, page 333 which is displayed at the start of the
target device. Other pages have at least a parent page from which they are
invoked and may have a child page to invoke. The invoking/invoked relations
implicitly give to the whole project a tree structure.

A child page may be invoked in two ways:
• Through an action associated to a key: associate an OpenPage action with a

physical key (if there is a keyboard) or with a virtual key (whose pressure is
an event raised by software).

• Through an action associated to a key: associate an OpenPage action with a
physical key (if there is a keyboard) or with a virtual key (whose pressure is
an event raised by software).

Pages
There are two main types of pages in Display:

• Child pages, page 328 (which are called Frame in FREE Studio Plus).
• Pop-up pages, page 330.

Asynchronous Messages
Asynchronous messages are similar to standard pages, except the following
features:

• They have an additional property, that is the identifier of the associated
message (Msg ID).

• They can not contain invocations to child pages.
• They have no defined parent page nor a tree structure, but they can be

invoked from any other standard page.
An asynchronous message can not be explicitly invoked. The system displays it
whatever the active page when it intercepts a message containing the
corresponding Msg ID. This message may be launched either by the firmware or
by a procedure through the Video_SendMessage function by using the following
syntax: Video_SendEvent (kWM_MSG, Msg ID).

When an asynchronous message is active, the controls of the Frameset (see
Frameset, page 339) are automatically disabled.

9MA10256.04 327

Managing Display Elements

Child Pages

Create a Child Page

Step Action

1 Right-click on the Pages item of the project tree and click Insert page:

2
The New page dialog box appears and you have to specify the name of the new page
and whether the page is a pop-up one or not.

NOTE: If you do not select the Pop-up check box when creating the new page, the
page is called “Child Page”. Its main feature is that it fits the whole area. So you
cannot define position and size of a child page because they are automatically set
depending on the area and on an eventual frame set.

HMI Project

My Project
Properties
Pages

Page1

Resources
Global
Global
Messa

Page properties...

Import page...

Import page from template...

Import page from project...

Import var/procedures...

Export var/procedures...

Paste page

Frameset

Insert page

OK

Page2I
Pop-up

Insert the name of the new

Cancel

New page

328 9MA10256.04

Managing Display Elements

Step Action

3 Choose to create a child page and if you want to call it “Page2” for example: type the
name Page2 in the apposite field and press OK to confirm your choice.

A new node appears in the page folder of the project tree:

4
Double-click the Page2 item to open the document with this page preview, which is
blank:

Page2*

HMI Project

My Project
Properties
Pages

Page1
Page2

Resources [BaseLanguage]
Global procedures
Global variables
Messages

9MA10256.04 329

Managing Display Elements

Pop-up Pages

Create a Pop-up Page

Step Action

1 Right-click on the Pages item of the project tree.

2 Click Insert page command from the contextual menu.

3 Write the name of this page (for example Page3) in the dialog box which appears and
select the pop-up property.

4 A new item appears in the Pages folder of the project tree:

Dimensioning and Setting the Pop-Up Page
Child and pop-up pages have different icons in HMI Project.

Pop-up pages are not subjected to any restriction from the frameset.

When a pop-up page is active, the controls of the Frameset (see Frameset, page
339) are automatically disabled.

You can choose their dimensions and positions in HMI Properties window:
• Sets the dimensions in XDim and YDim properties.
• Sets the position in XPos and YPos properties.

Modal Property
When a pop-up page opens:

• If Modal property is set to Yes, the controls are inactive. It means that the
parent page objects are disabled.

• If Modal property is set to No, the controls are disabled. It means that the
parent page objects are enabled if they are completely visible.

OK

Page3

Pop-up

Insert the name of the new

Cancel

New page

HMI Project

My Project
Properties
Pages

Resources [BaseLanguage]
Global procedures
Global variables
Messages

Page1
Page2
Page3

330 9MA10256.04

Managing Display Elements

Basic Page Settings

Viewing the Title Bar and the System Button
Display allows you to create a title bar for each page by selecting Yes in the Title
bar property.

You can name this title bar by writing a name in Caption text box.

If you want to activate the title bar and the close button, and to display the Page2
string as title, set as follow:

Then the page looks like the following picture:

Editing the Colors of the Page
You can edit the background color of the page and the text color through the HMI
Properties window: click the drop-down menu in the right-column of Background
color or Text color field.

The palette of colors appears, select the desired one:

NOTE: For monochrome screens, it is recommended to choose white as
background color and black as default text color.

Changing the Font
You can change the font of textual elements on the page through the HMI
Properties window: click the drop-down menu in the right-column of Font.

Title bar

Appearance

Caption

Page border
Yes

Flat

Page 2

Yes

Page2

HMI Properties

Properties Events

CharDimX

CharDimY

Font

Background color

Text color

Title bar

Page border

Caption

Appearance

6

8

EWP2_6x8

Doc All

Flat

9MA10256.04 331

Managing Display Elements

The different fonts available appear. Choose the one which suits you the best:

NOTE: EWP2_6x8 and EWP2_8x16 are the same font but with a different
size (the second font is larger).

Window Title Bar Parameters
The text, the background color and the used font are the same for all the pages of
the project, so you do not find them in this specific page properties. In order to
customize the window title bar of the pages only, double-click on the Properties
item of the project tree.

The window Pages properties opens. In System options tab, assign the font (in
this case EWP2_6x8), the text color, and the background color (in this case
respectively black and white).

HMI Properties

Properties Events

CharDimX

CharDimY

Font

Background color

Text color

Title bar

Page border

No

No

Caption

Appearance

6

8

EWP2_6x8

Doc All

Flat

EWP2_6x8
EWP2_8x16

EWP2_6x8

EWP2_8x16

Pages properties

Window title bar

Font

Text color

Back color

OK Annuler Aide

System optionsGeneral Language selection Global On Timer Resources

EWP2_8x16

332 9MA10256.04

Managing Display Elements

For example, the page looks like the following figures:

Before the procedure described above After the procedure described above

Assigning a Style to the Page
Display supports three styles for the pages, which you can select through the
Appearance property:

• Flat (the default style when you create a page),
• Raised,
• Sunken.

Overview of the three styles:

Flat Raised Sunken

Page2 Page2 Page2

Choosing the Start Page
You have to indicate the start page of the whole HMI project. The start page opens
at the HMI application start. If the project consists in one single page, the system
takes this one as start page.

To indicate the start page, double-click the Properties item of the project tree. In
the General tab, select the window to define as the start page and click OK:

You can also indicate the start page by right-clicking a page in the project tree and
clicking Set as start page.

Page2 Page2

Pages properties

Initial page selection

Page2
Page3

Page1

OK Annuler Aide

System optionsGeneral Language selection Global On Timer Resources

Page model

Hierachical

Flat

Screen size

Widht: 128

64Height:

9MA10256.04 333

Managing Display Elements

The start page is marked in the project tree by a green triangle:

NOTE: The pop-up pages can not be set as starting page.

Basic Page Operations

Overview
Basic operations such as export/import, copy/paste, and page-based template
management can be done with Display. Next paragraphs show these arguments
in detail.

Export of Pages to Files
Each page can be saved to be used later in other projects.

To export a page, right-click on the page in the HMI Project window and click
Export page… command.

Then, the application asks you to write the name of the file in which the page is
saved. This file has a *.pex extension. The exported file contains page information
and local procedures.

Import of Pages from Files
Each page can be saved to be used later in other projects.

To import a page, right-click Pages node and click Import page… command.
Then, you can select the file of the page to import. The imported page takes the
same name that it had when it was exported.

Export/Import Procedures and Variables
It is possible to export/import local or global variables and procedures using the
menu commands Export var/procedures… or Import var/procedures….

Copy/Paste of Pages in the Project
It is possible to copy and to paste a page inside the project.

To copy a page, right-click on the desired page and click Copy page command.

Then, you can paste the copied page by right-clicking Pages node and clicking
Paste page command.

Rename Pages
To rename a page, right-click on the page to rename and click Rename command.
This allows you to modify the name of the page.

Pages

Page2

Page1

334 9MA10256.04

Managing Display Elements

NOTE: This operation modify only the name of the page, project references to
the renamed page are not automatically updated.

Templates of Page Management
Templates allow you to save only the structure of the page and not the whole
page. Templates can be described as pages without references to external
variables. Templates can be grouped in library files (*.petx) and can be linked into
the project.

Export Pages into a Template File
To export a page into a library of templates, right-click on the page in the HMI
Project window and click Export page as template… command:

A library file with *.petx extension (new or already existing) is indicated. Template
is appended to the existing templates and a name for the library is requested. If
the template is already available in the library, a message asks you if you want to
rewrite the existing template or not.

Page is exported as template into the specified library with its element but without
any referenced variable.

Scripts and local variables are exported without modifications. References to
variables contained in the scripts are not modified.

Child pages, popup, and asynchronous messages can be treated as templates.

Usage of the Template Library in a Project
It is possible to include a template library in a project in order to use templates
when desired.

HMI Project

My Project
Properties
Pages

Pages

Resources
Global
Global
Messa

Page1
Set as start page

Rename

Import var/procedures...

Export var/procedures...

Export page...

Remove page

Page type

Insert procedure...

Copy page

Open

Export page as template...

9MA10256.04 335

Managing Display Elements

Click Template Management… command from Project menu. The following
window appears:

Available operations are listed here:
• Add: add a template library to the project. Including a library means that a

reference to the library of the *.petx file is added to the current project, and
that a local copy of the library is made.

• Remove: Remove template library from current project.
• Edit: To modify local copy of the template library removing no more used

templates.
• Re-Export: Export local copy of the template library into a new *.petx library

file.
• Remove all: Remove the template libraries from current project.

To add a template library to the project, click the Add button. Once chosen one of
the available libraries, Template list window appears as shown here:

Template library has been included to the project. Then, click the Close button.

HMI Templates window shows a tab for each library imported in current project.
Each tab shows the list of templates of the corresponding library:

NOTE: If HMI Templates window is not displayed, click View > Tool windows
> HMI Templates.

Template list

Add

Close

Remove all

Remove

Re-Export

Edit

Template list

Add

Close

Remove all

Remove

Re-Export

Edit

template

template

HMI Templates

Page1

336 9MA10256.04

Managing Display Elements

Using a Template
Once a template library has been added, you can use its elements by dragging the
chosen one from the HMI Templates window and by dropping it on the project
tree in the HMI Project window.

Once the item has been dropped, application asks you to write the name of the
new page created (based on the template).

Project Template Update
You can delete templates from the (local) template library using Edit button in the
Template list window:

Organization of Created Pages

HMI Actions Window

Overview
The HMI Actions window allows you to assign an action to a key of the target
device:

• Local actions: assign to a key of the target device an action which depends
on the selected page,

• Global actions: assign to a key of the target device an action which is always
the same whatever the selected page.

The HMI Actions window is made up of three boxes:
• Key: key of the target device,
• Action: action to be performed when the key is pressed,
• Link: name of the page to open (to be used when the selected action is Call

or OpenPage).

Template list Object browser

Add Pages
Filters

Name
*

Close

Close

Remove all

Remove

Import page into project

Delete page

Re-Export

Edit

template

Page1

Commands

Parameters management

Add DeviceID DB address mode Device protocol Network addressName

Remove Device

Close

1 ModbusFrigo

9MA10256.04 337

Managing Display Elements

Project Properties

Overview
Display manages the creation of pages for a specific application.

It is composed of several pages where you can arbitrarily arrange the controls.

You have to specify the start page which is displayed at the start of the target
device. Other pages have at least a parent page from which they are invoked and
may have a child page to invoke. The invoking/invoked relations implicitly give to
the whole project a tree structure.

Project Properties Window
To open the Pages properties window, double click Properties item in HMI
Project window. This window is composed of five tabs:

• General,
• System options,
• Language selection,
• Global On Timer,
• Resources.

General
It allows to select the start page among the implemented pages.

The Page model area allows you to select the type of page model in case of a
page calls another page. If the model is Hierarchical, then a child page can not
recall a parent page. If the model is Flat, all the pages can call the others without
limitations.

System Options
It allows you to customize the title bar features of the window: the font, the text
color and the background color.

Language Selection
Strings and enumerated data types are structured as to ease the multilingual
device. Moreover Display provides a function to export/import the above

Pages properties

Initial page selection

Page1

Page3
Page2

OK Annuler Aide

General Language selectionSystem options Global On Timer Resources

Page model

Hierachical

Flat

Screen size

Widht: 128

64Height:

338 9MA10256.04

Managing Display Elements

mentioned elements to/from a text file in order to simplify the translation from a
language to another.

English version French version

It allows you to add, remove, export, import, and select the resources languages
(for more information, refer to Strings Table, page 377 and Enumeratives, page
378). The label: sysLangID Value indicates the value which the sysLangID target
variables must take to display the pages in the selected language.

To add a language (for example Chinese), follow the procedure below:

Step Action

1 Export the language supported by the translator, select BaseLanguage (or any other valid
translation).

2 Click Export... button.

3 It opens a window requiring the destination folder for the selected language file.

4 At the end of the exportation, the file is composed of the resources of the project which
have to be translated: stings and enumeratives.

5 Translate the exported file and replace the text under the LANGUAGE tag with the one of
the new language (for example, in this case change it into “Chinese”).

6 Then, in the Language selection area, click Import ... button and select the translated file.

7 The new language appears in the list.

Global Periodic Procedure
GlobalOnTimer allows you to specify the name of a global procedure to be
periodically and independently executed on the active page. Such a procedure
may be effectively used to constantly test one or more PLC variables and to emit
alarm messages, for example through asynchronous messages, page 327.

Frameset

Overview
Display allows you to define areas which are called frames and are placed on the
sides of the screen and are always active.

IDS_Title_InsPW

IDS_Title_Alarms

IDS_ChilledTemp

IDS_HotTemp

IDS_OutdoorAlrTemp

IDS_CurrentWaterSet

IDS_Circuit1

IDS_LP

IDS_HP

IDS_CondTemp

IDS_CondTempSet

IDS_CondOutTemp

IDS_EvanTemp

INSERT PASSWORD

ALARMS

OUT

INT

OAT

SET

C1

LP

HP

CnT

SET

COT

EvT
String table (BaseLanguage)

ID Caption

IDS_EvanTemp EvT
String table (BaseLanguage)

ID Caption

IDS_Title_InsPW
IDS_Title_Alarms
IDS_ChilledTemp
IDS_HotTemp
IDS_OutdoorAlrTemp
IDS_CurrentWaterSet
IDS_Circuit1
IDS_LP
IDS_HP
IDS_CondTemp
IDS_CondTempSet
IDS_CondOutTemp

INSERER LE MOT DE PASSE
ALARMES
OUT
INT
OAT
SET
C1
LP
HP
CnT
SET
COT

9MA10256.04 339

Managing Display Elements

You can set these dimensions of the frames and insert some controls which are
active whatever the currently loaded page. Consequently, frames are useful to
host the objects which have to appear in the whole project. In this way you do not
need to duplicate them in each page.

There are two exceptions:
• The pop-up pages, page 330 when the Modal property is set to Yes in HMI

Properties window.
• All the asynchronous messages, page 327.

When these pages are active, the controls of the frameset are automatically
disabled.

Activate and Deactivate the Frameset
To activate the frameset, right-click Pages in the HMI Project window and select
Frameset.

To deactivate the frameset, right-click Pages in the HMI Project window and
select Frameset. In the window that appears, click OK (the current frameset will
be lost).

For more information about frameset properties, refer to Frame Set, page 360.

Multiple Pages Management

Overview
These functions allow you to construct pages with data of different kind that must
be represented on distinct pages for space reasons.

Sets, page 378 can be used with edit boxes or progress bars. Sets are ensemble
of variables even of different type. Set definition can be done from the Resource
in HMI Project window, they are implemented using a table with a series of
variables that are dynamically associated to the control basing on the current
index assigned to the page.

Association of Elements of a Set
Elements of a set can be associated to a control using the following syntax:
character # first of all, then the name of the set followed by the index of the
position of the element in the page, between round brackets.

My Project

ALARM HELP

340 9MA10256.04

Managing Display Elements

Position index is used to indicate the order in which elements are shown in case of
more than one element in the same page.

A page contains one or more controls based on one (or more) set. At runtime, the
page is replied in order to show all the elements contained in the set. In the last
page, if any control can not be filled with element value, that control is hidden.

We created before a set of five elements named BIOSParameters, now we can
associate #BIOSParemeters(0) to the first edit box and #BIOSParemeters
(1) to the second. So there are three pages: first page with the first two elements
of the set, second page with elements 2 and 3 and third page showing the last
element of the set. In the last page, the second edit box is not visible.

Navigation of the Elements of a Set
Navigation of pages that represent a set of elements is automatically done using:

• NextEdit event of the last selectable control of the page,
• PrevEdit event of the first selectable control of the page.

It is also possible to send special events to force the change of the page in this
way: Video_SendEvent (kEV_WM_CHANGESETPAGE, numpage). Where
numpage is the number of the page of the set.

Pages Numbering
Display defines two variables related to pages numbering:

• $PagIndex: current index of the page containing controls based on a set,
• $PagNumber: number of pages that complete the visualization of the whole

elements of the set.
These variables can be used in the page to show the numeration of the pages.
They can be used as variables associated to edit box controls in this way:

Automatic Documentation

Overview
During project development, it is usually necessary to write comments for each
page in order to explain how the page works.

Display integrates into its development environment the automatic documentation
feature. It consists in the generation of a graphical report with all the previously
inserted comments followed by the pages they refer to.

Variable

HMI Properties

Properties Events

Format %d

Alignment

Access

Selection order

Low limit

Data type

Right

RW

2

$PagNumber

UINT

*

*

Doc All

High limit

Refresh

Visible

TRUE

Selectable

TRUE

TRUE

LabelPage1 Page2

..Page of

9MA10256.04 341

Managing Display Elements

Comments related to controls and pages should be inserted in the Doc tab of the
HMI Properties window.

Documentation is generated when the Generate Doc. button is pressed.

At the end of the process, a dialogue box is shown. Click Open documentation
link to view the generated report using the browser.

It is also possible to manually open the *.html file generated. This file is created in
the project folder and is named “project name.html”.

NOTE: Documentation generation process requires the file “Documentation.
xsl” to be in the project folder. You can personalize this file to redefine report
style.

Insertion of Controls

Controls

Overview
A control is a display element (textual or graphical) contained in a HMI page. It can
be used to present information. Control content can be fix or can modifiable with
variables or parameters through HMI application. Display supports the following
controls:

• Static, page 343
• Edit Box, page 348
• Text Box, page 356
• Combo Box, page 345
• Graphic, page 343
• Image, page 345
• Animation, page 347
• Button, page 353
• Check Box, page 344
• Progress Bar, page 357

To insert a control on a page, you can do the following:
• In the HMI Page toolbar, click the icon of the control to be inserted. Then,

click at the place on the page where this control should be displayed.
• In the Page menu, click the icon of the control to inserted. Then, click at the

place on the page where this control should be displayed.

HMI Properties

Properties

Description Write here how the page works

Write here how the page works

Events AllDoc

OK Cancel

..

Description

342 9MA10256.04

Managing Display Elements

• From the HMI Vars and Parameters window, drag and drop a variable or a
parameter into a page. The Insert object window appears and lets you
choose which control to use to display this variable or parameter.

Static
Static controls display a fixed string whose contents cannot be edited when
executing. You must specify the text of the string directly or by the association of
the ID of a string defined as resource to support multi-language management. For
project resources and multi-language support, refer to Resources, page 376.

To insert a static control, click Insert static icon in HMI Page toolbar. Then, click in
the editor window the point where you want to insert the control.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Static control and click OK
button.

For more information about properties and events of the static control, refer to
Static Properties, page 363.

Graphic

Overview
Graphic controls are objects which are drawn when you open the page. They do
not change until the page is active.

They display a static line or rectangle. Their properties cannot be edited when
executing.

Inserting a Line
To insert a line, click Insert line icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

The inserted line has a default size and horizontal alignment:

You can resize it by dragging one of the two ends of the line:

9MA10256.04 343

Managing Display Elements

You can edit the color and the thickness of the line in the HMI Properties window.

Inserting a Rectangle
To insert a line, click Insert rectangle icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

The inserted rectangle has a default size:

You can customize the inserted rectangle by modifying its parameters in the HMI
Properties window.

For example, you can modify the thickness of the borders, the color of the borders
or the background or make the background transparent.

Check Box
Check box control displays a check box that allows you to select a true or false
condition identified by a variable.

To insert a check box control, click Insert new combo box icon in HMI Page
toobar. Then, either click in the editor window the point where you want to insert
the control or drag a variable from the project tree or from the library window.

HMI Properties

Properties Events

XPos

YPos

X2Pos

Y2Pos

Name

Border color

Thickness points

42

16

84

56

Line_1

5

Doc All

page1*

HMI Properties

Properties Events

XPos

YPos

XDim

YDim

Name

Border color

Border points

48

16

32

32

Rect_1

5

TRUE

Doc All

Background color

Transparentpage1*

344 9MA10256.04

Managing Display Elements

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Checkbox control and click
OK button.

Combo Box
Combo box control shows a list of strings connected to a variable with an
enumerator element.

To insert a combo box control, click Insert new combo box icon in HMI Page
toobar. Then, either click in the editor window the point where you want to insert
the control or drag a variable from the project tree or from the library window.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Combobox control and click
OK button.

Image

Overview
Image control displays a bitmap image.

Static images are different from:
• Animations, page 347: which are images which may change dynamically,

even though they have fixed position and dimensions.
• Floating images: which are images which move in the page.

Importing a Bitmap in the Project
The following image formats are supported by FREE Studio Plus:

• BMP (*.BMP;*.DIB;*.RLE)
• JPEG (*.JPG;*.JPEG;*.JPE;*.JFIF)
• GIF (*.GIF)
• EMF (*.EMF)
• WMF (*.WMF)
• TIFF (*.TIF;*.TIFF)
• PNG (*.PNG)
• ICO (*.ICO)

NOTE:

FREE Studio Plus displays the images on the target device without resizing
them. So make sure that the size of the imported images is not too large for
the target device on which they are displayed.

In Resources [BaseLanguage], right-click Bitmaps item and click the Import
bitmap… command.

9MA10256.04 345

Managing Display Elements

In the Import bitmap into project window, click Browse button. You can navigate
in the computer resources and select the desired image. In this case, the image
file is BulbOn.jpg, which represents a lighted bulb:

In the Bmp Name field, you can assign the bitmap name which appears in the
Resources [BaseLanguage] tree structure. The default name is the file name
without extension and preceded by the Bmp prefix.

The Transparency color field allows you to specify a transparency color. This
color is not drawn but lets the elements appear through the bitmap background.

You can customize the transparency color by taking the desired one with the
mouse from the Converted bitmap box.

RGB indicates the transparency color components. If the values are n/a, it means
that no transparency color has been selected. The Reset Transp. button allows
you to cancel the last selected transparency color.

At last, you can confirm the operation by clicking the Import button. The imported
bitmap appears as a new item in the Resources [BaseLanguage] tree structure:

Associating an Imported Bitmap with an Image Control
The control which is aimed to display the static images is called Image.

To insert an image, click Insert image icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

A new blank frame appears in the page. Drag the desired image from the Bitmaps
list and drop it to the blank frame. The image control does not modify its size to be
compatible with the assigned bitmap measures.

Import bitmap into project

Source bitmap Converted bitmap

Browse

Cancel

ImportReset Transp.

H:

R: n/a G: n/a B: n/aBmp Name BmpBulbOn

W:0 0 Transparency color:

Resources [BaseLanguage]
Bitmaps

Enumeratives

Image lists

String table
Sets

Fonts
Font styles
Expressions

BmpBulbOn

346 9MA10256.04

Managing Display Elements

Animation

Overview
An animation control allows you to associate each variation in the value of a
variable with the display of a different image.

It displays a bitmap image which you select from a list of images depending on the
value of an associated selection variable.

Inserting an Animation
In order to create an animation, you must first create a list of images. This list of
images includes the images that the variable can display. Each image is
associated with a value or a range of values that the variable can take. To know
how to import an image, refer to Importing a Bitmap in the Project.

To create a list of images, right-click Image lists inResources [BaseLanguage]
item and click Add new command.

Then, right-click on the newly created list and click Rename command. Write the
name of your choice and press the Enter key.

To add images to the list, click the New Record icon in the HMI Project toolbar. A
line appears in the editor window and must be completed like this:

• Init value: indicate the start of range value,
• End Value: indicate the end of range value,
• Bitmap: select the image to display for the specified value range from the list.

Repeat the operation until the list is complete:

Once the list of images is established, you have to create an animation. To do so,
select the desired page and click Insert new animation icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Animation control and click
OK button.

Resources [BaseLanguage]
Bitmaps
Enumeratives

Image lists

String table
Sets

Fonts
Font styles
Expressions

Folders

1
2
3
4
5

1
2
3
4
5

BmpSettings32x32
BmpMonitor32x32
BmpOnOff32x32
Bmplo32x32
BmpPassword32x32

Init value End Value Bitmap

Image lists - [Folders]

9MA10256.04 347

Managing Display Elements

A new blank frame appears in the page. Select it and fill in the following
parameters in HMI Properties window as follows:

• Image list: indicate the list of images to use with the variable,
• Animation variable: indicate the animation variable,
• Data type: indicate the type of the variable (filled in automatically after

selecting the variable).
The creation of the animation is finished. If you want, you can also edit the other
parameters present in the HMI Properties window.

Edit Box

Overview
An edit box control is a text frame which lets you display and edit an associated
variable or parameter.

It displays the contents of an associated variable.

Inserting an Edit Box in the Page
To insert an edit box, click Insert new edit icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Edit control and click OK
button.

A new text frame appears. It consists by default in some characters and its font is
specified in the Font property of the page.

page1*

HMI Properties

Properties Events

XPos

YPos

XDim

YDim

Name

Border color

Image list

48

16

32

32

Animation_1

uiNbFansCir1

Doc All

Appearance Flat

Border points 1

Animation variable

UINTData type

TRUEVisible

Folders

348 9MA10256.04

Managing Display Elements

In HMI Properties, you can modify several parameters including these:

• Appearance: appearance of the edit box (Flat by default).
• Font: font used by the text in the edit box (EWP2_6x8 by default).
• Sel. background and Sel. foreground: respectively text and background

colors when the edit box is selected.
• Number of chars: maximum number of characters which can be displayed.
• Access: to set the read-only mode, replace RW (read/write) by RO (read-

only).
• Refresh: to update constantly the contents of the edit box, select the TRUE

option.
Otherwise, the contents are refreshed just when drawing the page for the first
time.

• Label: if the target has a touchscreen display, shows keyboard and has this
feature enabled.
It is possible to add this text/’string resource’ as header of keyboard.

• Format: it represents the display format of the associated value of the
variable. The format value can be inserted only if a variable is available. It
opens a dialog window with these settings according to the type of variable
(integer, real, string).

For more control properties details, refer to Edit Box, page 364.

HMI Properties

Properties Events

XPos

YPos

Name

Appearance

Font

Text color

Background color

42

24

Edit_1

Flat

EWP2_6x8

Doc All

Sel. background

Sel. foreground

1Border points

Border color

3Number of chars

%dFormat

CenterAlignment

RWAccess

1Selection order

sysVERVariable

UINTData type

*Low limit

*High limit

TRUERefresh

TRUEVisible

TRUESelectable

Label

9MA10256.04 349

Managing Display Elements

Format Property Details
Integer format window:

• Integers (1-31): number of digits before decimal point.
• Decimals (1-7): number of digits after decimal point.
• Hexadecimal Uppercase (…00H): the number is shown as …00H

representation with uppercase H letter.
• Hexadecimal Lowercase (…00h): the number is shown as …00h

representation with lowercase h letter.
• Fill with zeroes: fill the entire edit box controls with 0 where there are not

numbers.
• View always sign: show the + or - symbol in edit box.
• Password: show only * symbols.
• Target metric: reserved.
• Target custom format: the target can define custom format to show the data

in a particular way. In that case, there is a variable on the target with the value
of the corresponding user mode.

• Enumerative: this representation allows you to select a string value
corresponding to numeric value defined in Resources, under Enumeratives.

OK Cancel

Integer format

Integers (1-31) 1

HH:MM

Decimals (1-7)

Hexadecimal Uppercase (...00H)

Hexadecimal Lowercase (...00h)

Fill with zeroes

View always sign

Password

Target metric

Target custom format

1

Enumerative

350 9MA10256.04

Managing Display Elements

Real format window:

• Integers (1-31): number of digits before decimal point.
• Decimals (1-7): number of digits after decimal point.
• Automatic decimals format: hides unnecessary zeros in decimals. If

checked, Decimals (1-7) is disabled.
• Fill with zeros: fill the entire edit box controls with zero where there are not

numbers.
• View always sign: show the + or - symbol in edit box.
• Password: show only * symbols
• Target metric: reserved.
• Target custom format: the target can define custom format to show the data

in a particular way. In that case, there is a variable on the target with the value
of the corresponding user mode.

String format window:

• Password: show only * symbols.
The Target custom format is a special feature which enables a particular custom
format implemented on the target.

The format is specified according with language printf syntax, refer to Format
Specification - Printf, page 366.

Edit Box and Display Variable Association
In order to display values, edit boxes have to be associated with variables.

To link an edit box to a variable, select the edit box by clicking it once and select
the Variable in HMI Properties window.

Integers (1-31) 1

Decimals (1-7)

Automatic decimals format

Target metric

Target custom format

HH:MM

Password

View always sign

Fill with zeroes

OK Cancel

Real format

1

String format

Password

OK Cancel

9MA10256.04 351

Managing Display Elements

Then, enter the name of the desired variable. If you do not know its name, click the
.. button to open the Property definition window.

The Property definition window allows you to find the desired variable.

You can use the Filter field to search for a variable according to its type:
• Page locals
• Global procedures
• Target (variables which allow the interaction between user interface and

system)
• PLC application
• Parameters (for more information about how to name a parameter, refer to

Edit Box to a Parameter, page 352)
• PLC libraries

Once found, select the desired variable and click OK.

Now the edit box control shows the value of the selected variable constantly
refreshed.

Linking an Edit Box to a Parameter
The name of parameters is composed like this: @device.variable name. This is
different from the name of the variables which show just their name.

The parameter may be inserted in the apposite controls property in the following
forms:

• Explicit form: @d.oi.os:type (example: @1.2010.0:UINT),
◦ d: numerical ID of the device,

This field of the device is a numerical or symbolic identifier (to be defined
at project creation). It refers to a specific device which may be local (the
device which executes the pages itself) or on the fieldbus.

◦ oi: object index,
◦ os: object subindex,
◦ type: PLC type.

@LocalParameters.Addr_CAN_OB
@LocalParameters.Addr_CAN_PI
@LocalParameters.Addr_RS232_PI
@LocalParameters.Addr_RS485_OB
@LocalParameters.Addr_RS485_OB1
@LocalParameters.Addr_RS485_PI
@LocalParameters.AIL1
@LocalParameters.AIL10
@LocalParameters.AIL11
@LocalParameters.AIL12
@LocalParameters.AIL2
@LocalParameters.AIL3
@LocalParameters.AIL4
@LocalParameters.AIL5
@LocalParameters.AIL6

@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter
@LocalParameter

Property definition

Variable Selection

Value selection

Filter:

All Add variable

OK Cancel

None
Variable

352 9MA10256.04

Managing Display Elements

• Implicit form: @dev.name (example: Frigo.AIL1).
◦ dev: symbolic identifier of the device,

This field is a symbolic identifier of a device whose numerical ID can be
retrieved by Display.

◦ name: symbolic name of the parameter.

Linking an Edit Box to a Variable by Dragging and Dropping
You can add variables and parameters to the HMI Vars and Parameters window
by dragging and dropping them in the page. Display requests to define the type of
control to insert to associate it with the variable.

Button

Overview
Buttons are controls which allow you to interact with the system, particularly in
case of touchscreen systems without keyboard.

There are four kinds of button control:
• LED button: to view an associated state of a boolean variable.
• Status button: to modify the state of a boolean variable.
• Opening button: to open an other page.
• Activation button: to start the execution of a customized procedure.

Inserting a Button
To insert a new button, click Insert new button icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Button control and click OK
button.

A new button control appears. It has a default size. You can change the
dimensions of the button by dragging one side with the mouse.

9MA10256.04 353

Managing Display Elements

Creating a LED Button
Once the button is inserted, you must define the colors associated with the
different states of the boolean variable:

• Border color: defines the border color when the button is inactive.
• Background color: defines the background color when the button is inactive.
• Selection border: defines the border color when the button is selected.
• Sel. background: defines the background color when the button is selected.

You can also customize the button appearance through the Appearance property.

Then, you must associate the LED button with a boolean variable through the
Variable field. This property defines the state of the button and can be associated
with:

• A constant value:
◦ FALSE: the control is always inactive.
◦ TRUE: the control is always selected.

• A boolean variable whose value defines dynamically the selection state.
To declare a boolean variable and associate it with the button control, write its
name in Variable field or select it through the button.

Creating a Status Button
Once the LED button is created, you must insert a new button (which corresponds
to the status button) and set it next to the LED button.

In HMI Properties window, write in Text field a name to display inside the new
inserted button.

Then, you must associate the status button with a boolean variable through the
Press variable field. In this case, the value of the boolean variable corresponds to
the pressure state of the status button.

HMI Properties

Properties Events

Selection text/img

Font

Appearance

Border points

Selection border

Background color

Border color

EWP2_6x8

Flat

1

1

Doc All

Sel. background

Selection order

TRUEVisible

Page2*

Text/img

HMI Properties

Properties Events

YDim 33

Name

Selection text/img

Font

Appearance

EWP2_6x8

Flat

Button_1

Press

Doc All

Press

354 9MA10256.04

Managing Display Elements

This allows you for example to display the LED button in green at runtime and to
display it in red as soon as you press the Press button (and therefore as soon as
you modify the value of the boolean variable).

Creating an Opening Button
Once the button is inserted, it can be used to open an other page when you press
it.

In HMI Properties window, select Action field and click OpenPage. Then, in
Action par field, write the name of the page to open when the opening button is
pressed.

In the following example, when you press the Open button of the Page2, it opens
the Page3 page.

Creating an Activation Button
Display enables you to implement some procedures (refer to Procedures that
Can Be Associated to Events, page 374) through which it is possible to customize
the HMI behavior.

Take the example of the creation of a procedure to increment the local variable “n”
of the Page1 page.

As this procedure applies on a local variable, it is local in the Page1 page too.

To create a procedure on a page, expand its structure tree. Then, right-click on the
Local procedures item and click Insert procedure… command.

In the New procedure window, write the name of the procedure and click OK
button.

Page2*

Action

HMI Properties

Properties Events

Transparent FALSE

Selection variable

Action par Page3

Alignment Center

FALSE

Doc All

Open

OpenPage

HMI Project

My Project
Properties
Pages

Page1

Page2
Page3

Messages

Resources [BaseLanguage]
Global procedures
Global variables

Local variables
n

Local procedures
Set as start page

Remove procedure

Insert procedure...

9MA10256.04 355

Managing Display Elements

Double-click the local variable which has been declared and appears under Local
procedures item. The ST language editor opens and lets you either implement or
edit the selected code of the procedure.

Write a procedure that applies a unit increment to the “n” variable. Then, close the
document.

Insert a new button control (which corresponds to the activation button) beside the
edit box associated with the “n” variable and write the character “+” in the Text
property.

0 +

Take the example of the execution of the prcIncrem procedure by clicking the +
button. In HMI Properties window, select Call action in the Action field. Then,
write the name of the procedure in the Action par field.

Every time you press the + button when executing the HMI, n increases by one
and the edit box shows the up-to-date value.

Text Box

Overview
Text boxes are not part of static controls because they have some properties
which let them modify themselves in a page through time. Visibility, selection, and
refresh may be assigned to variables, which may modify their value at any time.

Text box displays the contents of an associated string variable. It supports the
formatting on several lines of the text which is contained in the string.

Inserting a Text String
To insert a new text string, click Insert static icon in the HMI Page toolbar.

Cancel

OK

New procedure

Insert the name of the new procedure

prclncrem I

n := n + 1;0001

prclncrem - [Page1]*

356 9MA10256.04

Managing Display Elements

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Textbox control and click OK
button.

A new text string control appears. It has a default text which can me modified
through the HMI Properties window by editing the Text field.

str

This is the basic use of a text string. You can also assign text strings by taking
them from the resources (refer to Stings Table, page 376).

Progress Bar

Overview
A progress bar control allows you to display the variations in the value of a
variable in the form of a progress bar.

It represents the progress of an operation by showing a stained bar in a horizontal
or vertical rectangle. The length of the bar shows the percentage of the completed
operation.

Inserting a Progress Bar
To insert a progress bar, click Insert new progress icon in HMI Page toolbar.

Then, move the mouse to the active area of the page. A + cross shows the
insertion point of the object. Click-left to insert the object in the grid.

You can also drag a variable from the HMI Project window and drop it into the
editor window. In the Insert object window, select Progress control and click OK
button.

The inserted progress bar has a default size and horizontal orientation:

The orientation as well as the parameters of the progress bar can be modified
through the HMI Page window.

You must associate a variable with the progress bar. To do so, select the desired
variable in the Progress variable field of the HMI Properties window. The Data
type field is automatically updated.

Then, define the minimum value that the variable can reach in the Low limit field
and the maximum value that the variable can reach in the High limit field. When

9MA10256.04 357

Managing Display Elements

the value of the variable is at the minimum, the progress bar is empty. When the
value of the variable has reached its maximum, the progress bar is full.

Editing Control Properties

Visibility and Updating of Controls

Overview
Each control has its own properties which you can customize through the HMI
Properties window. The content of this window depends on the selected control.

Two properties that are common to most controls: Refresh and Visible.

Visibility Property
Most controls have the Visibility property, which determines whether the object is
visible or not.

This property can be associated either with:
• A constant value:
◦ TRUE: the field is always displayed,
◦ FALSE: the field is always hidden.

• A boolean variable: whose value dynamically establishes the visibility state.
It is possible to condition the visibility of a variable. For example, in case you want
to display a variable when its value is even and hide it when its value is odd.

For the purposes of the demonstration, take the detailed case in Inserting a Button
to Launch a Procedure, page 353. Suppose that you want to display the text string
when the value of the variable n is even and hide it when this value is odd.

For this purpose, it is necessary to declare a new boolean local variable which
indicates whether currently n is even.

It is necessary to edit the prcIncrem procedure so that, when it refreshes the n
value, it evaluates again whether it is even or odd. In order to access the
prcIncrem source code, select the corresponding item in the project tree by right-
clicking it. Then, click Open command.

The ST language editor opens and the code of the procedure may be extended as
follows:

In order to associate the visibility of the string state with the even boolean
variable, select the text string and click button in the Visibility property of HMI
Properties window.

Name Type Array Init value Description

Counter variable
Local variable n is even

100
TRUE

No
No

UINT
BOOL

n
even

1
2

n := n + 10001
0002
0003
0004
0005

even := (n MOD 2) = 0;

358 9MA10256.04

Managing Display Elements

In the Value selectionarea, click Variable and select Page locals in the Filter list.
Then, click the local boolean variable even.

Click OK button. The text string is only visible when the variable n is even.

Refresh Property
When available, the Refresh property determines if the associated object has to
be drawn once (when opening the page or coming back from a child page) or if it
needs to be constantly refreshed.

For example, this property distinguishes the edit box and the text box.

With regard to the edit box, the refresh property has to be set when compiling and
it can not be edited at runtime. If you assign Refresh = TRUE, the associated
value of the variable value is constantly read and refreshed. Otherwise (Refresh =
FALSE), the value is read and refreshed only when you open the page or when
you come back from a child page.

There is another option about text boxes: you can associate a boolean variable
that is used as trigger for refresh. When the trigger variable becomes TRUE, the
contents of the controls are refreshed. Then, it is automatically reset by Display to
FALSE.

Using Expression to Set Visibility and Selectable Properties
Expressions can be used to dynamically change visibility and selectable
properties of a control.

From the Resources item in HMI Project window, double-click Expressions
item. The definition table of expressions appears.

To add a new expression definition row, click New record icon in HMI Project
toolbar. Then, you can fill the fields:

even

Property definition

Variable Selection

Value selection

Filter:

Page locals Add variable

OK Cancel

Variable

False
True
Expression

9MA10256.04 359

Managing Display Elements

Expressions ID Expression Result type

The univoque ID associated to
the expressions, you can not
use special characters. This is
the ID that would be indicated
in the page controls visibility/
selectable field.

• You can use PLC
variables, target
variables, global
variables. You can use
simple variables,
elements of array or
structure field.

• Define your expression in
ST code, do not enter “=”
at the beginning or “;” at
the end of the
expression.

Expression code should be
something like this:

• TRUE
• sysTimer > 10000
• sysAlarm = TRUE
• (COND[0] OR COND[1])

AND S.RUN

Result type of all expressions
should be always BOOL.

You can use expressions to set the visibility property of static, edit box, image,
animation, button, check box, and progress bar controls.

You can use expressions to set the Selectable property of a static, edit box, and
check box controls.

In HMI Properties window, click Visible or Selectable field of the control. Then,
open the Property definition window by clicking button. In Value selection
area, select Expression box and the list of the defined expressions appears.

From the Expression Selection area, double-click the defined expression you
want to associate to the control. Property field assume the value: EXPR:
yourExpressionID.

You can also use expression for visibility and selectable properties of a set. From
a set definition grid, click the set item you want to modify. Then, in the Visible
field, click the button and apply the method previously described.

The defined expressions are evaluated:
• After the execution of the GlobalOnTimer page event (if specified),
• Before the execution of the OnTimer page event (if specified),
• Before the refresh of the controls of the page.

Page and Object Properties

Frame Set

Properties

Properties Available values Description

TopDim ≥ 0 Top-height of the frame (#pixel).

BottomDim ≥ 0 Bottom-height of the frame (#pixel).

LeftDim ≥ 0 Left-width of the frame (#pixel).

RightDim ≥ 0 Right-width of the frame (#pixel).

CharDimX ≥ 0 Horizontal space among grid points (#pixel).

CharDimY ≥ 0 Vertical space among grid points (#pixel).

Font Name found in Resources Default font used when inserting new objects in page.

Background Color ... Background color selectable from palette. In addition this color
is also set when inserting new objects in the frame.

360 9MA10256.04

Managing Display Elements

Properties Available values Description

Text Color ... Foreground color selectable from palette. This color is set
when inserting new objects in the frame.

Title bar Yes, No Title bar, settings can be found in System options dialog:
• Yes: page has title,
• No: page has not title.

Page Border Yes, No • Yes: page with outer border,
• No: page without outer border.

Caption Text otherwise Resource ID Text on title bar or Resource ID. This property is not sensible if
Title Bar field is set to No.

System menu Yes, No If Yes denotes that there is a button with ‘X’ image on it and
the behaviour is similar to Windows Dialog:

• Yes: page has close button,
• No: page has not close button.

Appearance Flat, Raised, Sunken • Flat
• Raised
• Sunken

Child Page

Properties

Properties Available values Description

CharDimX ≥ 0 Horizontal space among grid points (#pixel).

CharDimY ≥ 0 Vertical space among grid points (#pixel).

Font Name found inResources Default font used when inserting new objects in page.

Background Color … Background color selectable from palette. In addition this color
is also set when inserting new objects in the frame.

Text Color … Foreground color selectable from palette. This color is set
when inserting new objects in the frame.

Title bar Yes, No Title bar, settings can be found in System options dialog:
• Yes: page has title,
• No: page has not title.

Page Border Yes, No • Yes: page with outer border,
• No: page without outer border.

Caption Text otherwise Resource ID Text on title bar or Resource ID. This property is not sensible if
Title Bar field is set to No.

System menu Yes, No If Yes denotes that there is a button with ‘X’ image on it and
the behavior is similar to Windows Dialog:

• Yes: page has close button,
• No: page has not close button.

Appearance Flat, Raised, Sunken • Flat
• Raised
• Sunken

Events

Events Description

OnLoad On loading this page, i.e. when calling from parent page.

OnUnload On closing this page, when the page returns and the parent page is restored.

OnDeactivate On calling a child page and the current page is no more active. This event does not exist in main page.

9MA10256.04 361

Managing Display Elements

Events Description

OnActivate When the previous opened child page is closed. This event does not appear in leaf page, that is, in the
pages which do not call child pages.

OnDraw When the page starts drawing all the objects. The page has just drawn border, background, and title.

OnTimer Asynchronous event. You can link a procedure which is executed cyclically.

Pop-Up Page

Properties

Properties Available values Description

XPos ≥ 0 Top-left ‘x coordinate’ edge of full page.

YPos ≥ 0 Top-left ‘y coordinate’ edge of full page.

XDim > 0 Width of the page (#pixel).

YDim > 0 Height of the page (#pixel).

CharDimX > 0 Horizontal space among grid points (#pixel).

CharDimY > 0 Vertical space among grid points (#pixel).

Modal Yes, No • Yes: the parent page objects are disabled,
• No: all the parent page objects are enabled if they are

completely visible.

Font Name found in Resources Default font used when inserting new objects in page.

Background Color ... Background color selectable from palette. In addition this color
is also set when inserting new objects in the frame.

Text Color ... Foreground color selectable from palette. This color is set
when inserting new objects in the frame.

Title bar Yes, No Title bar, the settings can be found in System options dialog:
• Yes: page has title,
• No: page has not title.

Page Border Yes, No • Yes: page with outer border,
• No: page without outer border.

Caption Text otherwise Resource ID Text on title bar or Resource ID. This property is not sensible if
the Title Bar field is set to No.

System menu Yes, No If Yes denotes that there is a button with X image on it and the
behaviour is similar to Windows Dialog:

• Yes: page has close button;
• No: page has not close button.

Appearance Yes, No • Flat
• Raised
• Sunken

Events

Events Description

OnLoad On loading this page, i.e. when calling from parent page.

OnUnload On closing this page, when the page returns and the parent page is restored.

OnDeactivate On calling a child page and the current page is no more active. This event does not exist in main page.

OnActivate When the previous opened child page is closed. This event does not appear in leaf page, that is, in the
pages which do not call child pages.

OnDraw When the page starts drawing all the objects. The page has just drawn border, background, and title.

OnTimer Asynchronous event. You can link a procedure which is executed cyclically.

362 9MA10256.04

Managing Display Elements

Static

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

Name Not empty Name of object.

Text Text otherwise Resource ID Text or Resource ID shown in the object.

Font Name found in Resources Font used for drawing the text in object.

Background Color ... Background color selectable from palette.

Text Color ... Text color selectable from palette.

Sel. Background ... Background color selectable from palette when the object is
chosen. This property is not available if the Select field is
constant FALSE.

Sel. Foreground ... Text color selectable from palette when the object is chosen.
This property is not available if the Select field is constant
FALSE.

Appearance Flat, Raised, Sunken • Flat
• Raised
• Sunken

Border points ≥ 0 Border thickness (#pixel). This property is available only if
Appearance is set to Flat.

Border color ... Border color selectable from palette. This property is available
only if Appearance is set to Flat.

Number of Chars ≥ 0 Number of chars that this object can show. If the value is 0 the
object shows the complete text. Otherwise with another value
it can be truncated or extended.

Alignment Right, Center, Left Text alignment in the object.

Refresh TRUE, FALSE Continuous redraw of the object:
• FALSE: the Text value is read from memory and

updated only when opening the page or when a child
page is closed,

• TRUE: the Text value is read from memory and always
updated.

Select TRUE, FALSE, var_name Selected status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is selected and so it shows the
colors Select Back, Select Fore.

Visible TRUE, FALSE, var_name Visible status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is visible, otherwise it is hidden.

Events

Events Description

BeforeUpdate Before the object is redrawn.

AfterUpdate Immediately after the object is redrawn.

9MA10256.04 363

Managing Display Elements

Line

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

X2Pos > 0 Bottom-right 'x coordinate' edge relative to page.

Y2Pos > 0 Bottom-right 'y coordinate' edge relative to page.

Name Not empty Name of object.

Thickness pts > 0 Line thickness (#pixel).

Border col ... Line color selectable from palette.

Rectangle

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

XDim > 0 Width (#pixel).

YDim > 0 Height (#pixel).

Name Not empty Name of object.

Border points > 0 Border thickness (#pixel).

Border color ... Border color selectable from palette.

Background Color ... Background color selectable from palette. This property is
available only if Transparent is set to TRUE.

Transparent TRUE, FALSE Transparency:
• TRUE: transparent background,
• FALSE: solid background where color is Back Color.

Edit Box

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

Name Not empty Name of object.

Appearance Flat, Raised, Sunken • Flat: plain with use of Border pts and Border col,
• Raised
• Sunken

Font Name found in Resources Font used for drawing the text in object.

Background Color ... Background color selectable from palette.

Text Color ... Text color selectable from palette.

Sel. Background ... Background color selectable from palette when the object is
chosen. This property is not available if the Selectable field is
constant FALSE.

364 9MA10256.04

Managing Display Elements

Properties Available values Description

Sel. Foreground ... Text color selectable from palette when the object is chosen.
This property is not available if the Selectable field is constant
FALSE.

Border points ≥ 0 Border thickness (#pixel). This property is available only if
Appearance is set to Flat.

Border color ... Border color selectable from palette. This property is available
only if Appearance is set to Flat.

Number of Chars > 0 Chars visible in the object. Width of entire object is calculated
among this value and the size of Font. If NumChar are less
than the value, the object shows this error string: #####.

Format String as printf or enum_name The format can be numeric, to define as printf of C language
(refer to Format Specification - Printf, page 366), numerative, if
in this field there is enum_name defined in Resources (refer
to Resources, page 376).

Alignment Right, Center, Left Text alignment in the object.

Access RO, RW Accesses variable Assoc var used in object:
• RO = read only,
• RW = read/write.

Selection Order ≥ 0 Selection order of the object. It can be selected by pressing a
key or by means of a procedure. In this case the selection
moves from the current object to the previous or next Sel.
Order object.

Variable Not empty Name of the variable that can be shown and edited with this
object. It can be any variable of the project, (local, global,
imported from PLC or target - refer to Edit Box and Display
Variable Association, page 351), a parameter (refer toEdit Box
and Display Variable Association, page 351) or an element of
a set (refer to Multiple Pages Management, page 340).

Data type UNDEF, BOOL, SINT, USINT, BYTE,
INT, UINT, WORD, DINT, UDINT,
DWORD, REAL, STRING

Type of Assoc var. If it is a variable, the type is defined
automatically. This property is available if Assoc var is an
explicit parameter.

Low limit CONSTANT, var_name Name of variable or numeric constant. This is the least number
that the object can show. It can be any variable of the project,
(local, global, imported from PLC or target - refer to Edit Box
and Display Variable Association, page 351). This object
shows an error string (!!!!!!!) if condition does not holds. The *
symbol means that there is no low limit.

High limit CONSTANT, var_name Name of the variable or numeric constant. This is the
maximum number that the object can show. It can be any
variable of the project, (local, global, imported from PLC or
target - refer to Edit Box and Display Variable Association,
page 351). This object views an error string (!!!!!!!) if condition
does not hold. The * symbol means that there is no high limit.

Refresh TRUE, FALSE Enables continuous update of the value:FALSE: the Assoc
var value is read from memory and updated only when open
page or when a child page is closed,TRUE: the Assoc var
value is read from memory and always updated.

Visible TRUE, FALSE, var_name Visible status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is visible, otherwise hidden.

Selectable TRUE, FALSE, var_name Selected status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is selected and so it shows the
colors Select Back, Select Fore. If this field is FALSE the
Access property is not available.

Label - If the target has a touchscreen display, shows keyboard and
has this feature enabled.

Events

Events Description

BeforeUpdate Before the object is redrawn.

AfterUpdate Immediately after the object is redrawn.

9MA10256.04 365

Managing Display Elements

Events Description

OnEnter Whenever the object is selected and receives the command for entering in edit-mode.

OnClick Touchsreen system: Whenever HMI receives a pressure on the object.

Other devices: Whenever an object enters the editing mode using the local keyboard.

OnChange Touchsreen system: Whenever you confirm the modifications and the value is different from start.

Other devices: Whenever an object exits the editing mode, even if its value remains unchanged.

Format Specification - Printf

Functions and Values

If the object has not any enumerative format, the format string is composed as
follows:

%[flags][width][.precision]type

The field has one or more characters, that describe the specification. The simplest
format contains only percentage symbol and one char as type (for example: %s).

Next table explains in details functions and values.

Field Available values Description

flags • + prints always the sign, even if
the number is positive.

• 0 prints zeros in head until width
(if specified) or NumChar.

This char is an option for chars order, print sign, number of
decimal digit. This field may have more than one flag.

width > 0, ≤NumChar Maximum chars can be printed. Allows to view values that do
not fill NumChar fully.

precision ≥ 0 Decimal digits after the point. If the field is an integer and there
is a precision the object shows a decimal point. E.g. the value
is 102 integer, and precision is 2, with %.2d, the number is
shown as 1.02

type • %d: Integer with sign.
• %f: Real.
• %x: Hexadecimal with lowercase

chars.
• %x: Hexadecimal with uppercase

chars.
• %s: String.
• %@sdf: Password.
• [%d,u,f,x]: Custom measure unit

format.

Mandatory field.

Image

Properties

Properties Available values Description

XPos const ≥ 0, variable Top-left ‘x coordinate’ edge relative to page. It is possible to
assign a variable only if Style is set to Floating.

YPos const ≥0, variable Top-left ‘y coordinate’ edge relative to page. It is possible to
assign a variable only if Style is set to Floating.

XDim > 0 Width (#pixel).

YDim > 0 Height (#pixel).

Name Not empty Name of object.

Appearence Flat, Raised, Sunken • Flat: plain with use of Border pts and Border col,

366 9MA10256.04

Managing Display Elements

Properties Available values Description

• Raised,
• Sunken.

Border points ≥ 0 Border thickness (#pixel). This property is available only if
Appearance is set to Flat.

Border color ... Border color selectable from palette. This property is available
only if Appearance is set to Flat.

Bitmap Name found in Resources Bitmap used for drawing the image in object.

Background image Image object in the page Name of another object that is redrawn when Style is set to
Floating. It is available only if it is overlapped with this image.

Visible TRUE, FALSE, var_name Visible status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is visible, otherwise it is hidden.

Style Docking, Floating • Docking: fixed position,
• Floating: variable position, according to XPos variable

and Ypos variable.

Animation

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

XDim > 0 Width (#pixel).

YDim > 0 Height (#pixel).

Name Not empty Name of object.

Appearance Flat, Raised, Sunken • Flat: plain with use of Border pts and Border col,
• Raised,
• Sunken.

Border points ≥ 0 Border thickness (#pixel). This property is available only if
Appearance is set to Flat.

Border color ... Border color selectable from palette. This property is available
only if Appearance is set to Flat.

Image list Name found in Resources It contains the images that the object can view and the value
range.

Animation variable var_name Name of the variable that is compared with value range in
Image list.

Data type SINT, USINT, BYTE, INT, UINT, WORD,
DINT, UDINT, DWORD

Type of Animation var. If it is a variable, the type is
automatically defined.

Visible TRUE, FALSE, var_name Visible status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is visible, otherwise hidden.

Events

Events Description

BeforeUpdate Before the object is redrawn.

AfterUpdate Immediately after the object is redrawn.

9MA10256.04 367

Managing Display Elements

Button

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

XDim > 0 Width (#pixel).

YDim > 0 Height (#pixel).

Name Not empty Name of object.

Text/Img Empty or explicit text or Resource ID or
Bitmap

Text or image to view in the button:
• string,
• Resource ID,
• bitmap.

Selection Text/Img Empty or explicit text or Resource ID or
Bitmap

Text or image to view in the button when it is selected:
• string,
• Resource ID,
• bitmap.

Font Name found in Resources Font used for drawing the text in object. This field is not
available if it shows a bitmap.

Appearance Flat, Raised, Sunken • Flat: plain with use of Border pts and Border col,
• Raised,
• Sunken.

Border points ≥ 0 Border thickness (#pixel). This property is available only if
Appearance is set to Flat.

Border color ... Border color selectable from palette. This property is available
only if Appearance is set to Flat or Text is not empty.

Background color ... Background color selectable from palette. This property is
available only if Transparent is set to TRUE.

Selection border ... Border color when the object is selected. This property is not
available if Selection var is FALSE fixed.

Sel. background ... Background color when the object is selected. This property is
not available if Selection var is FALSE fixed.

Selection order ≥ 0 Selection order on which the object can be selected with the
pressure of a key or with a procedure. In this case the
selection moves from the current object to the previous or next
Sel. Order object.

Visible TRUE, FALSE, var_name Visible status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is visible, otherwise it is hidden.

Transparent TRUE, FALSE, var_name Transparency. It can be constant (TRUE or FALSE) or linked
with a boolean variable var_name: if var_name is TRUE the
object is transparent.

Press variable Empty or var_name When the button is pressed var_name is set to TRUE. When
the button is not pressed, var_name is set to FALSE.

Selection variable TRUE, FALSE, var_name Selected status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name. If var_
name is TRUE the object is selected and so it shows the
colors Select Back, SelectBord. If this field is FALSE,
SelectBordand Select Back properties are not available.

Action Call, OpenPage, Close, NextField,
PrevField, Edit

Action executed on button pressure.

Action par page_name proc_name Parameter associated with the action executed on button
pressure. It is available only if Action is OpenPage (Action
par = name of the page to open) or Call (Action par = name
of the procedure to execute).

Alignment Right, Center, Left Text alignment in the object.

368 9MA10256.04

Managing Display Elements

Events

Events Description

OnClick Whenever HMI receives a pressure on the object, valid only for touchscreen systems.

OnRelease Whenever HMI releases the pressure on the object, valid only for touchscreen systems.

Progress Bar

Properties

Properties Available values Description

XPos ≥ 0 Top-left 'x coordinate' edge relative to page.

YPos ≥ 0 Top-left 'y coordinate' edge relative to page.

XDim > 0 Width (#pixel).

YDim > 0 Height (#pixel).

Name Not empty Name of object.

Appearance Flat, Raised, Sunken • Flat: plain with use of Border pts and Border col,
• Raised,
• Sunken.

Border points ≥ 0 Border thickness (#pixel). This property is available only if
Appearance is set to Flat.

Border color ... Border color selectable from palette. This property is available
only if Appearance is set to Flat or Text is not empty.

Bar color ... Color of step bar, selectable from palette.

Background color ... Background color selectable from palette.

Visible TRUE, FALSE, var_name Visible status of the object. It can be constant (TRUE or
FALSE) or linked with a boolean variable var_name: if var_
name is TRUE the object is visible, otherwise it is hidden.

Refresh trigger TRUE, FALSE, var_name Object redraw:
• FALSE: the Progress var value is read from memory

and updated only when opening page or when a child
page is closed.

• TRUE: the Progress var value is read from memory and
always updated.

• var_name: the Progress var value is read from memory
and updated only when the variable becomes TRUE.
After the update the runtime sets it to FALSE.

Progress variable Not empty Step variable. This is the filling percentage of bar in relation
with the range assigned by Lo limit and Hi limit. It can be any
string variable of the project (local, global, imported from PLC
or target) or a parameter (Edit Box and Display Variable
Association, page 351).

Data type UNDEF, BOOL, SINT, USINT, BYTE,
INT, UINT, WORD, DINT, UDINT,
DWORD, LWORD, REAL, LREAL,
STRING

Type of Progress var. If it is a variable, the type is
automatically defined. This property is available if Progress
var is an explicit parameter.

Low limit Constant or var_name Name of the variable or numeric constant. This is the least
value for step bar. It can be any variable of the project, (local,
global, imported from PLC or target) with type specified by
Data type.

High limit Constant or var_name Name of the variable or numeric constant. This is the
maximum value for step bar. It can be any variable of the
project, (local, global, imported from PLC or target) with type
specified by Data type.

Orientation Horizontal, vertical Direction of step bar.

9MA10256.04 369

Managing Display Elements

Events

Events Description

BeforeUpdate Before the object is redrawn.

AfterUpdate Immediately after the object is redrawn.

Declaration of Variables

Types of Variables

Overview
In a Display project, there are four different classes of variables.

Local Variables
Local variables are accessible via the page from which they were declared.

They are listed in the project tree, under the Local variables folder. Local
variables can be used to carry out operations on PLC (for example to apply a
different scale or to add an offset) or system variables, or to implement local
procedures.

Global Variables
Global variables are declared in Display and they are accessible from every page
of the project. Global variables are listed in the Global variables folder in the
project tree. The function of the global variables is similar to the one of the local
variable but the different visibility scope makes them unusable for the
implementation of global procedures or for the parameters passing between
distinct pages.

System Variables
The interaction between Display and target is enabled by system variables which
the software publishes outside in a *.tgt file.

You may access system variables in read/write or in read-only mode. If you try to
access a read-only variable in write mode, an error occurs during compilation.

Data Management

Overview
It is possible to distinguish the data in local variables (visible in the page scope
only) and global variables (visible from every page). For some controls it is
possible to use parameters and sets.

Declaring a Local Variable
Declare a local variable, which you can use just in the specific page where the
declaration takes place.

370 9MA10256.04

Managing Display Elements

In the pages tree, under the Init page item, double-click the Local variables item.

The local variables editor window opens. It is blank at present.

Click New record icon in the HMI Project toolbar.

A dialog window opens requesting to specify the basic features of the new
variable. For example, you can declare “n” as a new 16 bit unsigned integer
variable.

Confirm the operation by clicking OK button. The new corresponding record is
added to the variables editor window.

You can change the features of this new variable by editing the fields of the record
which you have just created. For example, you may assign an initial value different
from null and a comment.

When you save the project by clicking the apposite button or when you close the
variables editor, Display adds a new item in the pages tree. It corresponds to the
local variable which you have just declared.

Declaring a Global Variable
Let us assume that you want to declare a floating point global variable “t”: right-
click on the Variables item under the Global variables node of the resources tree
and select the Open command in the contextual menu which appears.

Follow the steps as shown in Declaring a Local Variable, page 370, until the new
global variable appears as a new item in the pages tree.

Inserting Field Parameters
Target system usually has internal variables and is connected on a fieldbus, so it
needs to show some variables of the different devices which are connected on the
net.

For this reason, Display allows you to link a specific file which contains the
variables definition on the bus. Click the Parameters management icon in HMI
Profile toolbar.

The parameters management window appears.

Variable

Name nI

Type UINT

Array

Attribute

OK

...

...

Parameters management

Add DeviceID DB address mode Device protocol Network addressName

Remove Device

Close

9MA10256.04 371

Managing Display Elements

Through the Add Device button you can add a new object linked to the target on
the fieldbus.

The selection window appears. Then you have to take from your PC a *.parx file
(for more information, refer to Description of Parameter File, page 372).

A device called ”Frigo” has been inserted. In order to see the relevant parameters,
click the Close button.

In HMI Vars and Parameters window, you can see the device and its parameters.

When you need to update the list of parameters, if the *.parx file has not been
moved to another directory, it is not necessary to repeat the above mentioned
procedure, but it is enough to press the button.

Description of Parameter File

Overview
As described in Inserting Field Parameters, page 371, it is possible to link in
Display some variables from external device.

In some objects you can define an explicit or implicit syntax in order to use the
parameter mode.

To use the implicit syntax, @Device.Parameter, Display requires a *.parx file in
XML format.

For example:

<parameters>
<par ipa=”10100” name=”Par_TAB” descr=”Tab (map code)” defval=”0” min=
”0” max=”65535” um=”num” typetarg=”unsignedShort” typepar=
"unsignedShort">

<protocol name=”Modbus” commaddr=”15716” commsubindex=”0”/>
<protocol name=”CanOpen” commaddr=”15716” commsubindex=”0”/>

</par>
<par ipa=”10001” name=”Gain_Ntc_AI2” descr=”NTC calibration gain AI2”
defval=”32768” min=”0” max=”65535” um=”num” typetarg=”unsignedShort”
typepar="unsignedShort">

<protocol name=”Modbus” commaddr=”15617” commsubindex=”0”/>
<protocol name=”CanOpen” commaddr=”15617” commsubindex=”0”/>

</par>
<par ipa=”11308” readonly=”false” name=”Modem_InitStr1” defval=””
descr=”InitString (1st part)” typetarg=”string” strsize=”19”>

<protocol name=”Modbus” commaddr=”15821” commsubindex=”0”/>
<protocol name=”CanOpen” commaddr=”15821” commsubindex=”0”/>

</par>
</parameters>

Where each parameter has these fields:
• ipa: parameter index used as input value of Video_SetParam(), Video_

GetParam(). If there are nodes with protocol type, they have more priority
than ipa, so Display uses them.

• Name: parameter name.
• descr: complete description of parameter.
• defval: default value of parameter.

Parameters management

Add DeviceID DB address mode Device protocol Network addressName

Remove Device

Close

1 ModbusFrigo

372 9MA10256.04

Managing Display Elements

• min: minimum value of parameter.
• max: maximum value of parameter.
• um: measure unit of parameter.
• typetarg: type of parameter read as “Installer type”. The available values

with the translation in PLC are:
◦ char: SINT,
◦ unsignedChar: USINT,
◦ short: INT,
◦ unsignedShort: UINT,
◦ int: DINT,
◦ unsignedInt: UDINT,
◦ boolean: BOOL,
◦ digitalInput: BOOL,
◦ digitalOutput: BOOL,
◦ float: REAL,
◦ double: REAL,
◦ string: STRING.

• typepar: type of parameter read as “IEC type”. In case of generic modbus
slaves should be the same as typetarg. The available values with the
translation in PLC are:
◦ char: SINT,
◦ unsignedChar: USINT,
◦ short: INT,
◦ unsignedShort: UINT,
◦ int: DINT,
◦ unsignedInt: UDINT,
◦ boolean: BOOL,
◦ digitalInput: BOOL,
◦ digitalOutput: BOOL,
◦ float: REAL,
◦ double: REAL,
◦ string: STRING.

• strsize: number of character if it is a string type.

Using Advanced Features

Events

Overview
There are different classes of events.

Page or Control Events
Each characteristic behavior of a specific object can raise a specific event.

Each event can be associated to a procedure Procedures that Can Be Associated
to Events, page 374 that is executed each time the event takes place. The list of

9MA10256.04 373

Managing Display Elements

all available events for each Display object (page or control) is reported in Page
and Object Properties, page 360.

Key Pressure Events
These events take place when a key is pressed, the raising of the event starts the
execution of the associated action (refer to Actions that Can Be Associated to Key
Pressure, page 375) if it is. The pressure of a key can be also simulated by
software.

Events Raised by Software
Programmer can raise events by software using the function Video_SendEvent
inside the target software or in the body of the procedure, using following syntax:

Video_SendEvent (event_id, param),

Where event_id is the identifier of the type of the event and param is an integer
16 bit parameter.

Display supports software events defined in this table:

Event Parameter Description

kWM_NULL Do not care No event.

kWM_KEY Key code Simulates the pressure of the
key specified as parameter
then cause the associated
action if it is.

kWM_MSG Window ID Causes a system message
that, once got by the system,
causes the instant opening of
the alarm page that has
Window ID as identifier.

kWM_SELECT Edit box handle In touchscreen systems
simulates the pressure on the
edit box whose handle is
passed as parameter, causing
its selection or its transition to
edit mode.

kWM_PUSH Button handle In touchscreen systems
simulates the pressure on the
button whose handle is passed
as parameter, causing the
execution of the associated
action if it is.

kEV_WM_CHANGESETPAGE Page number Shows the page specified by
the parameter (if the context is
a page in which sets are used).

Procedures that Can Be Associated to Events
A procedure is a program that is executed when the event that has been
associated to it, takes place.

There are two classes of procedures:
• Local procedures: This kind of procedures can be called only within the scope

of the page in which are declared. In particular, they can be associated to the
events of the page itself and of all their controls. The same can be said for
software events raised when the page they refer to is active. Procedure code
can contains references to all the types of variables, with local variables of the
page too.

• Global procedures: This kind of procedures can be called from every page
and can be also used as periodic asynchronous routine of alarm
management. They can not contain variables references.

374 9MA10256.04

Managing Display Elements

Here follow the description of the syntax to get the properties of a control from a
procedure; similarly to C language printf it is:

“fb%s%s.%s”, page_name, ctrl_name, prop_name

Where:
• page_name is the name of the page that has the control,
• ctrl_name is the name of the control,
• prop_name is the name of the property of the control.

So if you want to get the property Foreground color of the Static named
String_26 in Main page, we have to write:fbMainString_26.foreCol.

NOTE: The name of the property to use in the scripts of the procedures is the
name of the functional block exported by the software of the target, not the
name in the properties window, page 319.

Actions that Can Be Associated to Key Pressure
In common keyboard, not touchscreen systems, interaction between you and the
system is normally based on keys pressure.

The HMI Actions window allows you to associate a code of a key to one of the
actions listed in the table. In this way the pressure of that key causes the specified
action.

The table of the HMI Actions window is composed like this:

Event Link Description

Call Procedure name Causes the invocation of the
local or global procedure
whose name is indicated in the
Link field.

OpenPage Page name Causes the opening of the
page whose name is indicated
in the Link field.

Close Do not care Causes the closure of the
current page

NextField Do not care Move the selection to the next
edit box. If the system is not
touchscreen moves selection
to the buttons to allow their
pressure.

PrevField Do not care Move the selection to the
previous edit box.

Edit Do not care Access edit mode for the
selected edit box. If the system
is not touchscreen allows you
to simulate the pressure of the
button.

There are two types of associations key-action:

HMI Actions

Local actions Global actions
Key

Down
VK_F1
VK_F4
VK_F3
Up

Call
OpenPage
NextField
PrecField
Call

NextPageSet1
MenuL1_Settings2

PrevPageSet1

Action Link

9MA10256.04 375

Managing Display Elements

• Local actions: local associations, valid only for the page currently open in the
editor of the pages.

• Global actions: global associations, valid in any point of the project.
If the system has the touchscreen feature, normal interaction with you is made by
the pressure of sensible area on the screen. However this table does not loss its
meaning because allows you to define virtual keys and to control their pressure by
software causing in this way the dynamic execution of specific actions.

NOTE: If the same action is defined both at local and at global level, system
does not give errors nor warnings because local declaration precedes global
one.

Resources

Overview
A resource is an interface element. You can get informations from resources or
can use them to do actions.

Display supports different categories of resources that are managed by
Resources item in HMI Project window, page 319.

Fonts
Fonts are the different kinds of characters supported for the output of text strings
on the screen. Fonts had been managed by FREE Studio Plus old versions as text
files with *.plf extension and structured with the same syntax of the initialization
definition of an array variable in IEC. Now, images are saved and loaded in binary
format to optimize loading time on images of big size.

At project opening time, if FREE Studio Plus finds this declaration, it searches in
project folder for a file named “font_name.plk” and loads it in memory.

Bitmaps
Bitmaps are pictures to associate to image controls, page 345. The images are
saved and loaded in binary format to optimize loading time on images of big size.

At project opening time, if Display finds this declaration, it searches in project
folder for a file named “bitmap_name.plk” and loads it in memory.

376 9MA10256.04

Managing Display Elements

Display provides a tool to convert bitmaps from Windows format to Display
format. To start it, right-click Bitmaps item of Resources in HMI Project window
and click Import bitmap... command.

Click Browse button to navigate in computer resources and select the desired
source file.

In Bmp Name field, you can personalize bitmap name that is shown on resource
tree. Bitmap name is constituted by file name without extension and with “Bmp”
prefix by default.

Transparency color field allows you to specify transparency color. So a color that
is not really drawn on the screen but a transparent color zone that does not cover
elements previously drawn.

Transparency color can be personalized by choosing it by mouse from Converted
bitmap window.

RGB indicates transparency color Red, Green, Blue components. n/a value
indicates that no transparency color has been selected.

Reset Transp. button allows you to undo last selected transparency color.

Once finished these operations it is possible to confirm bitmap importation by
clicking Import button.

Strings Table
It is possible to explicitly write the text to show on a text string or on a title of the
page. It is also possible to refer to one of the strings of the resources specifying its
ID. For more information, refer to Language Selection, page 338.

In first case, text is always the same. In second case, the text that correspond to
the active language is shown.

So, English language string table contains the following record.

And French language string table contains the following record.

If you refer to the identifier ID_GDB_RXNAK from a page control or from a page:
• If current active language is English, “Bad RX packets” is shown.
• If current active language is French, “Paquets RX défectueux” is shown

instead.

Import bitmap into project

Source bitmap Converted bitmap

Browse

Cancel

ImportReset Transp.

H:

R: n/a G: n/a B: n/aBmp Name

W:0 0 Transparency color:

IDS_State State

IDS_State Etat

9MA10256.04 377

Managing Display Elements

Enumeratives
An enumerative is a data type defined by you, it is a set of constants that you
named. Each element of an enumerative is treated as a constant and can be
translated in the available languages of the project.

For example: create an enumerative called “SettingsTouch”.

Enumerative records are shown by double-clicking SettingsTouch node.

Then, introduce an edit box control, page 348 and insert the name of the
enumerative “SettingsTouch” in its Formatproperty in HMI Properties window.
Control shows the string associated to the value as it is in the table above, not the
numeric value of the variable associated to the control.

If the numeric value of the variable does not match with any record of the
enumerative table, an error string ######## is shown instead.

Even enumerative are supported by multi-language feature. It is possible to
personalize the name and the record values of the enumerative.

Image Lists
An images list is very similar to an enumerative but with the following differences:

• Intervals of constants are supported (not only simple values),
• Each value has an image associated,
• A list of images determines the content shown by an animation control, while

an enumerative can be associated to an edit box.
For example: if you have an images list “ListBulbs” that is shown under
Resources.

It is possible to see all the records of the list by double-clicking the node.

Introduce an animation control, page 347 in the page, and select “ListBulbs” in
Image list property in HMI Properties window. The control shows the image
whose specified interval includes the value of a variable associated to the control.

If the numeric value of the associated variable does not match any record in the
list, a default image (with init and end value set to *) is shown if it is. If no default
image is specified, no image is drawn.

Sets
Sets are ensemble of global variable even of distinct type.

In particular there are two types of set:
• Variable/parameter sets even of not equal type (VARIANT),

Value

Awaiting settings ...

Touch screen set up
Saving settings ...

0

2
1

Description

HMI Project

Enumeratives
Expressions
Font styles
Fonts
Image lists

Sets
String table

ListBulbs

Init value End Value Bitmap

1

3
2

BmpBulbOn

BmpBulbOn3
BmpBulbOn2

1

3
2

378 9MA10256.04

Managing Display Elements

• Strings sets (STRINGS).
The sets of the first type are defined indicating VARIANT as type. This kind of set
has the following attributes:

• Dynamic: indicates that every n execution cycles target automatically reloads
the elements of the set and hides those elements that have no visibility
(boolean constant FALSE or associated visibility variable set to false at that
moment).

• Array: indicates that the unique element of this set is a variable of type array.
NOTE: This kind of set can be assigned only to an edit-box control.

Once defined a set, each element of the set can be added via drag and drop from
HMI Vars and Parameters window or can be manually inserted by you.

The VARIANT type is used to define the following attributes:
• Variable/Parameter: variable/parameter name.
• Format: indicates how to show associated variable value specifying a syntax

analogous to C language printf (for more information, refer to Child Page,
page 361).

• Text Align: the alignment of the text to show.
• Min/Max: minimum and maximum value for the element of the set.
• Visible: boolean variable or constant that defines the visibility of the element.

If dynamic feature of the set is active, the variable is periodically checked to
hide or show the element.

• Selectable: indicates that the element can be selected. In this case, a
boolean variable or constant can be assigned too.

For a set of type STRING, you have to define only two attributes, the string or the
ID of a string resource, page 377 and the variable/constant of visibility. An element
not visible is not shown on the screen.

NOTE: This kind of set can be used with static control only.

9MA10256.04 379

Managing Display Elements

File for Target Description
Overview

The files contain some definitions of target environment. Display uses this
information for generating custom code.

The *.def file consists of two sections. It is allowed comment, that starts with a
semicolon (;).

This file is included in *.pajx file.

Target Properties

Description
This section consist of five records, which support one or more parameters. Each
record is on new line and the elements must be separated with spaces or tabs.

Record Structure

Header Param. 1 Param.
2

Description

SCREEN dimX dimY Screen dimension of target measured in pixel:
• DimX: width,
• DimY: height.

SAVESCREEN 0/1 — Target board can save and restore video
memory:

• 0: no save,
• 1: save and restore.

TOUCHSCREE-
N

0/1 — Target board has touchscreen can use the
pressure events:

• 0: no touchscreen;
• 1: exists touchscreen.

REFRESH msec — Refresh time of all objects in page, measured in
milliseconds.

FONT_
FORMAT

“HH”/“VH” — Font encoding.

ColorSET “RGB” —

BMP_FORMAT “SIMULAB” — Image encoding.

UNICODE 0/1 — Target board has support for Unicode fonts.

JOYPAD 0/1 — Target board has a joypad that can be used for
moving among elements of page and can be
connected to actions.

INIT 0/1 — If set to 1 says that HMI run-time has Video_
InitHMI(), invoked on target start-up.
Typically it is used for custom commands on
start-up.

BMPFULL 0/1 — If set to 1 generates PLC code extended for
bitmap instead binary bitmap.

Object Version
The graphical objects (edit box, text box, static, bitmap, and so on) can have a
version, or can not exist. The syntax is:

CTRL “Name” “Version”

Where:

380 9MA10256.04

File for Target Description

• Name: name of graphical object. Example: Editbox;
• Version: version of HMI run-time objects.

If this value is set to -1, Display does not make available this object.

System Enumeratives
Enumeratives of *.def file are maps for binding among numeric values and strings,
or other numeric values.

Each enumerative has an identifier, that specifies a function in the map with this
syntax:

ENUM id en_key en_val

Where:
• id: enumerative identifier,
• en_key: value-key of record (must be a number),
• en_val: value of value-key (can be a number or string).

Descriptions
This paragraph describes the values for system enumeratives.

• Enumerative 100
With this key you can define new buttons (the names are shown in the Key
field of actions table in HMI Actions window (refer toActions that Can Be
Associated to Key Pressure, page 375).

The number of lines is not limited. But you must define at least the elements of
102 enumerative.

• id: 100,
• en_key: key encoding (one byte),
• en_val: string with key name.
• Enumerative 101

With this key you can define new actions (the names are shown in Action
field of actions table in HMI Actions window (refer toActions that Can Be
Associated to Key Pressure, page 375.

• id: 101,
• en_key: action identifier,
• en_val: string with action name.

This enumerative has a well defined number of lines. The following table presents
the corresponding actions:

en_key Action

0 Calls local or global procedures.

1 Opens child page.

2 Closes current page.

3 Selects next object Edit Box, Button, and so on.

4 Selects previous object Edit Box, Button, and so on.

9 Enters editing-mode (Edit Box, Button).

10 Leaving (not implemented).

The string en_val is arbitrary.
• Enumerative 102

9MA10256.04 381

File for Target Description

Selection and edit functions:
• id: 102,
• en_key: identifier of edit function,
• en_val: string with the name of associated string.

The name of this field en_val must be the same of en_val of 100 enumerative,
so that Display associates an edit function with a key.

This enumerative has a well defined number of lines. See the actions in the table
below:

en_key Action

0 Confirms modifications and leaves editing-mode.

1 Loses modification and leaves editing-mode.

2 Deletes selected character.

3 Moves cursor left.

4 Moves cursor right.

5 Selects the previous element of an enumerative associated with an Editbox.

6 Selects the next element of an enumerative associated with an Editbox.

7 Deletes the first character on the left.

8 Inserts tab character.

9 Switching to uppercase alphanumeric characters for a single character.

10 Transition to permanent uppercase alphanumeric characters.

• Enumerative 103
Define a color palette, the encoding is RGB:

• id: 103,
• en_key: index of the color inside palette,
• en_val: RGB color encoding.

RGB encoding represents 24 bit of colors: 0x00bbggrr where bb (1 byte)
intensity of blue, gg (1 byte) the green and rr (1 byte) the red. The intensity is at
least 0 and at most 0xff.

The number of lines is not limited. You can define which colors he wants.
• Enumerative 104

Names of object styles (shown on Appearance in HMI Properties window):
• id: 104,
• en_key: style,
• en_val: string with the name of style.

This enumerative contains at most 3 records, supported by Display.

en_key Style

0 Flat, plane.

1 Raised.

2 Sunken.

Example
;
;Target properties
;
SCREEN 128 64
SAVESCREEN1

382 9MA10256.04

File for Target Description

REFRESH 50
FONT_FORMAT"VH"
JOYPAD 1
INIT 1
BMPFULL 1
UNICODE 1
;
;Versions of controls
;
CTRL "Static"1
CTRL "EditBox"1
CTRL "TextBox"-1
CTRL "Button"2
CTRL "Progress"0
CTRL "Animation"0
CTRL "Image"0
CTRL "CustomCtrl"-1
CTRL "Chart"-1
CTRL "Trend"-1

;
;Enumeratives
; ENUM 100: key codes
;
ENUM 10013"Enter"
ENUM 1008"Left"
ENUM 10012"Right"
ENUM 10011"Up"
ENUM 10010"Down"
ENUM 10019"LongEnter"
ENUM 10015"LongLeft"
ENUM 10016"LongRight"
ENUM 10017"LongUp"
ENUM 10018"LongDown"
ENUM 10030"VK_F1"
ENUM 10031"VK_F2"
ENUM 10032"VK_F3"
ENUM 10033"VK_F4"
ENUM 10034"VK_F5"
ENUM 10035"VK_F6"
ENUM 10036"VK_F7"
ENUM 10037"VK_F8"
ENUM 10038"VK_F9"
ENUM 10039"VK_F10"
;
; ENUM 101: key-related actions
;
ENUM 1010"Call"
ENUM 1011"OpenPage"
ENUM 1012"Close"
ENUM 1013"NextField"
ENUM 1014"PrevField"
ENUM 1019"Edit"
;
; ENUM 102: editing-mode keys
;
ENUM 1020"Enter"
ENUM 1021"LongLeft"
ENUM 1023"Left"
ENUM 1024"Right"
ENUM 1025"Up"
ENUM 1026"Down"
;
; ENUM 103: color codes
; BBGGRR
ENUM 1030"0x00000000" ; Bianco

9MA10256.04 383

File for Target Description

ENUM 1031"0x00FFFFFF" ; Nero
;
; ENUM 104: controls appearance
;
ENUM 1040"Flat"
ENUM 1041"Raised"
ENUM 1042"Sunken"

384 9MA10256.04

File for Target Description

Functions and Function Blocks for HMI
What’s in This Chapter

Functions for HMI .. 385
Function Blocks for HMI ... 395

Overview
Here is the lists of the functions that HMI run-time exports to Display. You can use
them into script and procedures.

These functions are divided into several categories which are shown in details in
the following paragraphs.

Functions for HMI

System Functions: Hardware and Operating System

Video_InitHMI (dmy)

Initialization for HMI runtime

I/O Name Type Description

Input dmy unsigned char Reserved. Set 0.

Output Video_InitHMI unsigned char TRUE if successful, FALSE otherwise.

Video_Switch (on)

Turn on/off the display

I/O Name Type Description

Input on unsigned char TRUE: turns on the display.

FALSE: turns off the display.

Output Video_Switch unsigned char Not sensible (always TRUE).

Video_LCDContrast (more)

Display contrast

I/O Name Type Description

Input on unsigned char TRUE: turns on the display.

FALSE: turns off the display.

Output Video_Switch unsigned char Not sensible (always TRUE).

Video_SaveRect (x1, y1, x2, y2)

Save display area to memory

I/O Name Type Description

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

y1 unsigned short Top-left 'y coordinate' edge relative to full page.

x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

Output Video_SaveRect unsigned char Not sensible (always TRUE).

9MA10256.04 385

Functions and Function Blocks for HMI

Video_WriteFromBuff (x1, y1, x2, y2)

Restore display area from memory (previously saved with Video_SaveRect).

I/O Name Type Description

Input x1 unsigned short Not sensible (saved area has the original coordinates).

y1 unsigned short Not sensible (saved area has the original coordinates).

x2 unsigned short Not sensible (saved area has the original coordinates).

y2 unsigned short Not sensible (saved area has the original coordinates).

Output Video_
WriteFromBuff

unsigned char Not sensible (always TRUE).

Video_Lock (res)

Lock the display resources for exclusive access

I/O Name Type Description

Input res unsigned char Reserved. Set 0.

Output Video_Lock unsigned char Not sensible (return input parameter res).

Video_Unlock (res)

Unlock the display resource after exclusive access

I/O Name Type Description

Input res unsigned char Reserved. Set 0.

Output Video_Unlock unsigned char Not sensible (return input parameter res).

Video_Sleep (msec)

Suspend the task where the function is used

I/O Name Type Description

Input msec unsigned short Suspends time measured in milliseconds.

Output Video_Unlock unsigned short Not sensible (always TRUE).

Function for Managing Project Resources and Common
Properties

Video_SetWndSysProps (pFont, colFore, colBack)

Unlock the display resource after exclusive access

I/O Name Type Description

Input pFont unsigned long Address of font for printing text in title bar (the font must be added with
Video_AddFont function).

colFore unsigned long Text color of Title Bar.

colBack unsigned long Background color of Title Bar.

Output Video_
SetWndSysProps

unsigned char Not sensible (always TRUE).

386 9MA10256.04

Functions and Function Blocks for HMI

Video_SetEditKey (id, code)

Set key-code for editing functions

I/O Name Type Description

Input id unsigned char Identifier of editing function (see. Enumerative table, page 381).

code unsigned char Key code associated with editing function.

Output Video_
SetEditKey

unsigned char Not sensible (always TRUE).

Video_AddFont (pFont, charLen, charHei, offs)

Publish a new font in HMI run-time

I/O Name Type Description

Input pFont unsigned long Address of first byte of font.

charLen unsigned long Character width of font (#pixel).

charHei unsigned long Character height of font (#pixel).

offs unsigned long Byte offset of a font that starts with ASCII 0x00 (subset of characters).

Output Video_AddFont unsigned char TRUE if successful, FALSE otherwise.

Video_AddFontUnicode (pFont, charLen, charHei)

Publish a new unicode font in HMI run-time

I/O Name Type Description

Input pFont unsigned long Address of first byte of font.

charLen unsigned long Character width of font (#pixel).

charHei unsigned long Character height of font (#pixel).

Output Video_
AddFontUnicode

unsigned char TRUE if successful, FALSE otherwise.

Video_LoadLanguage (pResStrings, pEnums)

Load strings and enumeratives of any language

I/O Name Type Description

Input pResStrings unsigned long Address of first resources string for current language.

pEnums unsigned long Address of first resources string for current language.

Output Video_
LoadLanguage

unsigned char TRUE if successful, FALSE otherwise.

Video_DrawFrames (left, top, right, bottom, colBack, fBar, pTitle, fResStr, fSysBtn, style)

Function for draw frame-set

I/O Name Type Description

Input left unsigned short Width of left frame (#pixel).

top unsigned short Height of top frame (#pixel).

right unsigned short Width of right frame (#pixel).

bottom unsigned short Height of bottom frame (#pixel).

colBack unsigned long Background color.

fBar unsigned char TRUE: shows title bar.

FALSE: hides title-bar.

pTitle unsigned long Text of title bar: NULL: No string in title.

fResStr unsigned char TRUE: pTitle is a resource string.

FALSE: pTitle is an address of constant string.

9MA10256.04 387

Functions and Function Blocks for HMI

Video_DrawFrames (left, top, right, bottom, colBack, fBar, pTitle, fResStr, fSysBtn, style)

Function for draw frame-set

I/O Name Type Description

fSysBtn unsigned char TRUE: shows system.

FALSE: hides system button.

style unsigned char 0: Flat

1: Raised

2: Sunken

Output Video_
DrawFrames

unsigned char Not sensible (always TRUE).

Functions for Operating with Pages

Video_InitPage (x1, y1, x2, y2, pTitle, wData)

Show a page on display

I/O Name Type Description

Input x1 unsigned short Top-left ‘x coordinate’ edge relative to full page.

y1 unsigned short Top-left ‘y coordinate’ edge relative to full page.

x2 unsigned short Bottom-down ‘x coordinate’ edge relative to full page.

y2 unsigned short Bottom-down ‘y coordinate’ edge relative to full page.

pTitle unsigned long Address of Text of title bar. NULL: no text in title bar.

wData unsigned short Feature declaration

bit 0...7:
• 0: flat
• 1: raised
• 2: sunken

bit 8:
• 0: no title bar
• 1: shows title bar

bit 9:
• 0: pTitle is an address of constant string
• 1: pTitle is a resource string

bit 10:
• 0: no system button
• 1: shows system button

bit 11:
• 0: window not modal
• 1: modal window (sensible only for pop-ups windows)

Output Video_InitPage unsigned char Not sensible (always TRUE).

Video_SetPageColors (colFore, colBack)

Assign all colors for current page

I/O Name Type Description

Input colFore unsigned long Color of the text of page.

colBack unsigned long Background color of page.

Output Video_
SetPageColors

unsigned char TRUE if successful, FALSE otherwise.

388 9MA10256.04

Functions and Function Blocks for HMI

Video_ClrScreen ()

Delete entire display area and fill with background color defined with Video_SetPage-Colors

I/O Name Type Description

Output Video_ClrScreen unsigned char TRUE if successful, FALSE otherwise.

Video_ClrRect (x1, y1, x2, y2)

Delete only a portion of display and fill with background color defined with Video_Set-PageColors

I/O Name Type Description

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

y1 unsigned short Top-left 'y coordinate' edge relative to full page.

x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

Output Video_ClrRect unsigned char TRUE if successful, FALSE otherwise.

Video_SetFont (fontPtr)

Load a font as current font for drawing objects. To correctly execute this function, the font must be declared with Video_
AddFont

I/O Name Type Description

Input fontPtr unsigned long Address of first byte of font.

Output Video_SetFont unsigned char TRUE if successful, FALSE otherwise.

Video_SetColors (colForeTxt, colBackTxt, colForeSel, colBackSel)

Assign the current colors for drawing objects

I/O Name Type Description

Input colForeTxt unsigned long Text color.

colBackTxt unsigned long Background color.

colForeSel unsigned long Text color for selection.

colBackSel unsigned long Background color for selection.

Output Video_SetColors unsigned char TRUE if successful, FALSE otherwise.

Video_ResetMaps (res)

Delete the maps saved for every object. The maps are created adding an object at once, with access mode kACS_INIT

I/O Name Type Description

Input res unsigned long Reserved. Set 0.

Output Video_ResetMaps unsigned char Not sensible (return input parameter res).

Function for Objects

Video_NextEdit (fRWOnly)

Enable selection for next objects identified by Sel. Order attribute

I/O Name Type Description

Input fRWOnly unsigned char Limit for selecting the next edit-box: FALSE: next edit-box must be
selectable.

TRUE: the next edit-box must be selectable and writable.

Output Video_NextEdit unsigned char Handle of selected objects; if -1 the function has an error.

9MA10256.04 389

Functions and Function Blocks for HMI

Video_PrevEdit (fRWOnly)

Enable selection for previous objects identified by Sel. Order attribute

I/O Name Type Description

Input fRWOnly unsigned char Limit for selecting the next edit-box:
• FALSE: the next edit-box must be selectable.
• TRUE: the next edit-box must be selectable and writable.

Output Video_PrevEdit unsigned char Handle of selected objects; if -1 the function has an error.

Video_EnterEdit (wHnd)

Enter edit-mode of an Edit Box otherwise execute the action for a button. The object holds the task until exits from edit-mode.

I/O Name Type Description

Input wHnd unsigned short Handle of object that must be edited or execute his action.

Output Video_EnterEdit unsigned char Return pressed key code for exiting edit-mode. If return -1 is an error
only if the object is an edit-box.

Video_EnterEditSel (wHnd, onlySelect)

Select object or enter edit-mode of an Edit box otherwise execute the action for a button. The object holds the task until exit from
edit-mode.

I/O Name Type Description

Input wHnd unsigned short Handle of object that must be edited or execute his action.

OnlySelect unsigned char • FALSE: as VideoEnterEdit().
• TRUE: enables only the selection without entering edit-mode.

Output Video_
EnterEditSel

unsigned char Return pressed key code for exiting edit-mode. If return -1 is an error
only if the object is an edit-box.

Video_PushButton (wHnd)

Enter press-mode for buttons. The object holds the task until exit from press-mode. This function is sensible only for
touchscreen systems.

I/O Name Type Description

Input wHnd unsigned short Handle of button.

Output Video_
PushButton

unsigned char • TRUE: last pressure event was in button area.
• FALSE: last pressure event was outside button area. -1: error.

Video_FirstLastEdit (rwReq, last)

Return the handle of first or last selectable controls.

I/O Name Type Description

Input rwReq unsigned char Boolean parameter. It indicates if the function checks for the objects that
have read-write access mode.

last unsigned char • TRUE: last selectable object.
• FALSE: first selectable object.

Output Video_
FirstLastEdit

short Handle of the object; -1 if errors or do not exist selectable objects.

Drawing Functions

Video_Line (x1, y1, x2, y2, pts, color)

Draw a line

I/O Name Type Description

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

390 9MA10256.04

Functions and Function Blocks for HMI

Video_Line (x1, y1, x2, y2, pts, color)

Draw a line

I/O Name Type Description

y1 unsigned short Top-left 'y coordinate' edge relative to full page.

x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

pts unsigned char Thickness.

color unsigned color Line color.

Output Video_ClrRect unsigned char TRUE if successful, FALSE otherwise.

Video_Rectangle (x1, y1, x2, y2, pts, transp, bordCol, fillCol)

Draw a rectangle

I/O Name Type Description

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

y1 unsigned short Top-left 'y coordinate' edge relative to full page.

x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

pts unsigned char Border thickness.

transp unsigned char • TRUE: transparent square.
• FALSE: solid square.

bordCol unsigned long Border color.

fillCol unsigned long Fill color. The value is not sensible if transp is TRUE.

Output Video_Rectangle unsigned char TRUE if successful, FALSE otherwise.

Video_DrawBorder (style, x1, y1, x2, y2, pts, color)

Draw a border outside the rectangle area

I/O Name Type Description

Input style unsigned char 0: flat. 1: raised. 2: sunken.

x1 unsigned short Top-left 'x coordinate' edge relative to full page.

y1 unsigned short Top-left 'y coordinate' edge relative to full page.

x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

pts unsigned char Border thickness. It is sensible only if style = 0.

color unsigned char Border color. It is sensible only if style = 0.

Output Video_
DrawBorder

unsigned char TRUE if successful, FALSE otherwise.

Video_DelBorder (style, x1, y1, x2, y2, pts)

Delete a border outside the rectangle area. The color of fill is the page color assigned with Video_SetPageColors

I/O Name Type Description

Input style unsigned char • 0: Flat
• 1: Raised
• 2: Sunken

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

Input y1 unsigned short Top-left 'y coordinate' edge relative to full page.

Input x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

9MA10256.04 391

Functions and Function Blocks for HMI

Input y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

Input pts unsigned char Border thickness It's sensible only if style = 0

Output Video_DelBorder unsigned char TRUE if successful, FALSE otherwise.

Video_PrintBitmap (ptrBmp, x, y)

Print a bitmap coded with run-time HMI format

I/O Name Type Description

Input ptrBmp unsigned long Address of first byte of bitmap.

x unsigned short Top-left 'x coordinate' edge relative to full page.

y unsigned short Top-left 'y coordinate' edge relative to full page.

Output Video_
PrintBitmap

unsigned char Not sensible (always TRUE).

Video_DelBitmap (ptrBmp, x, y)

Delete a bitmap where it is not transparent, coded with run-time HMI format

I/O Name Type Description

Input ptrBmp unsigned long Address of first byte of bitmap.

Input x unsigned short Top-left 'x coordinate' edge relative to full page.

Input y unsigned short Top-left 'y coordinate' edge relative to full page.

Output Video_DelBitmap unsigned char Not sensible (always TRUE).

Video_InitBmpTreeRefresh (x1, y1, x2, y2)

Delete a bitmap where it is not transparent, coded with run-time HMI format

I/O Name Type Description

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

Input y1 unsigned short Top-left 'y coordinate' edge relative to full page.

Input x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

Input y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

Output Video_DelBitmap unsigned long Address of invisible device context.

Video_EndBmpTreeRefresh (pDC, x1, y1, x2, y2)

Restore original device context and copy the area from invisible context to display context

I/O Name Type Description

Input pDC unsigned short Address of invisible device context.

Input x1 unsigned short Top-left 'x coordinate' edge relative to full page.

Input y1 unsigned short Top-left 'y coordinate' edge relative to full page.

Input x2 unsigned short Bottom-down 'x coordinate' edge relative to full page.

Input y2 unsigned short Bottom-down 'y coordinate' edge relative to full page.

Output Video_
EndBmpTreeRe-
fresh

unsigned long Not sensible (always TRUE).

Functions for Text
Video_PrintStr (str, x, y)

Print a string using the current font set with SetFont and current colors set with Set-Colors()

392 9MA10256.04

Functions and Function Blocks for HMI

I/O Name Type Description

Input str char * Text to print.

x unsigned short Top-left 'x coordinate' edge relative to full page.

y unsigned short Top-left 'y coordinate' edge relative to full page.

Output Video_PrintStr unsigned char Number of chars printed.

Video_PrintResStr(idRes, x, y)

Print a resources string using the current font set with SetFont and current colors set with SetColors()

I/O Name Type Description

Input idRes unsigned short Identifiers of resource.

x unsigned short Top-left 'x coordinate' edge relative to full page.

y unsigned short Top-left 'y coordinate' edge relative to full page.

Output Video_
PrintResStr

unsigned char Number of chars printed.

Video_PrintNChar(str, accMode, x, y, nChar, format)

Print at most nChar characters of a string, using the current font set with SetFont and current colors set with SetColors(). It uses also
a format for drawing the text. If nChar is less than string length, it truncates the string; otherwise apply the alignment.

I/O Name Type Description

Input str char * Text to print.

accMode unsigned char kACS_PRINT: print with colForeTxt and colBackTxt colors.

kACS_SELECT: print with colForeSel and colBackSel colors.

x unsigned short Top-left 'x coordinate' edge relative to full page.

y unsigned short Top-left 'y coordinate' edge relative to full page.

nChar unsigned char Maximum number of chars to print.

format unsigned long Alignment of text. It is sensible only if nChar > length of str:
• 0x08 = right alignment;
• 0x10 = center alignment;
• 0x20 = left alignment.

Output Video_
PrintResStr

unsigned char Number of chars of truncated string.

Functions for Parameter Access
Video_GetParam(idxDevice, idxParam, subIdxParam, pVal, type)

Read a variable at address idxParam from Modbus idxDevice and put the result to variable addressed by pointer pVal

I/O Name
Wr

Type Description

Input idxDevice unsigned char Index of device connected.

idxParam unsigned short Index of parameter.

subIdxParam unsigned char Sub-index of parameter.

pVal unsigned long Address of variable that contains the read value.

type unsigned char Parameter type. Available values: tyBool, tySInt, tyUSInt,
tyByte, tyInt, tyUInt, tyWord, tyDInt, tyUDInt, tyDWord,
tyReal,tyString.

Output Video_GetParam unsigned short Number of chars printed.

9MA10256.04 393

Functions and Function Blocks for HMI

Video_SetParam(idxDevice, idxParam, subIdxParam, pVal, type)

Write the value of a variable addressed by pointer pVal to the variable of address idxParam of Modbus idxDevice

I/O Name Type Description

Input idxDevice unsigned char Index of device connected.

idxParam unsigned short Index of parameter.

subIdxParam unsigned char Sub-index of parameter.

pVal unsigned long Address of variable that contains the value to write.

type unsigned char Parameter type. Available values: tyBool, tySInt, tyUSInt,
tyByte, tyInt, tyUInt, tyWord, tyDInt, tyUDInt, tyDWord,
tyReal, tyString.

Output Video_SetParam unsigned short Integer values:
• 0 = successful;
• 1 = index of parameter not found;
• 2,8,9 = system errors;
• 3 = type not valid;
• 4 = read-only parameter;
• 5 = cannot write now;
• 6 = the value is less than the min value;
• 7 = the value is more than the max value.

Functions for Events
Video_SendEvent(msgID, wParam)

Send an event from code

I/O Name Type Description

Input msgID unsigned char Available values:
• kWM_NULL = no event;
• kWM_KEY = key pressure;
• kWM_MSG = open message;
• kWM_SELECT = select an edit-box, a button;
• kWM_PUSH = pressure on button.

wParam unsigned short Event parameter. It has a different meaning according to msgID:

if kWM_NULL = not sensible;

if kWM_KEY = pressed key.

For the key a constant value exists. The syntax is: kKEY_<key> Ex.
LongLeft -> kKEY_LongLeft

if kWM_MSG =ID of message page to open;

if kWM_SELECT= handle of selected edit-box, button;

if kWM_PUSH = handle of pressed button.

Output Video_SendEvent unsigned short TRUE if successful, FALSE otherwise.

394 9MA10256.04

Functions and Function Blocks for HMI

Video_GetEvent(dmy)

Pop an event from queue

I/O Name Type Description

Input dmy unsigned char Reserved. Set 0.

Output Video_GetEvent unsigned short Double word with inside the encoding.

16 low bit = type of event:
• kWM_NULL = no event;
• kWM_KEY = key pressure;
• kWM_MSG = open message;
• kWM_SELECT = select an edit-box, a button;
• kWM_PUSH = pressure on button.

16 high bit = event parameter:
• if kWM_NULL = not sensible;
• if kWM_KEY = pressed key;
• if kWM_MSG = ID of message page to open;
• if kWM_SELECT = handle of selected edit-box, button;
• if kWM_PUSH = handle of pressed button.

Function Blocks for HMI

Function Blocks
Video_GetPageColors

Get the page colors of the page where called

I/O Name Type Description

Local variables — — —

Input variables — — —

Output variables color word32 Text color in the page.

back word32 Background of the page.

9MA10256.04 395

Functions and Function Blocks for HMI

Static01

Text strings with variable visibility

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution.

Input variables wHnd word16 Handle of the object. Must be unique among static objects.

x word16 Top-left 'x coordinate' edge relative to full page.

y word16 Top-left 'y coordinate' edge relative to full page.

accMode byte • kACS_IDLE = no effect;
• kACS_INIT = first draw on display;
• kACS_PRINT = update draw on display.

fResStr byte Boolean value:
• FALSE = pString is the address of string to draw;
• TRUE = pString is the identifier of resource string.

pString word32 Text to draw. It is different according to fResStr.

pFont word32 Address of font for drawing text. The font must be initialized with
Video_AddFont.

foreCol word32 Text color.

bckCol word32 Background color.

pVisVar word32 Visibility. Available values:
• FALSE = text not visible;
• TRUE = text always visible;
• var_addr = address of boolean variable.

format word16 Format for numeric values, encoded in 32 bit:
• bit 3: 1 = right alignment
• bit 4: 1 = center alignment
• bit 5: 1 = left alignment

style byte • 0 = flat
• 1 = raised
• 2 = sunken

bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color. It is sensible when style = 0 bordPts > 0 and not
pSelVar = 1 fixed.

selBackCol word32 Background color when object is selected. It is not sensible if pSelVar
= 0 fixed.

selForeCol word32 Text color when selected. It is not sensible if pSelVar = 0 fixed.

pRefrVar word32 Variable for update:
• FALSE = the object is redrawn only when the page is opening or

when returning from child page;
• TRUE = the object is always redrawn.

pSelVar word32 Selection flag for the object. Suggest if the object must uses
{‘selBackCol’ } and {‘selForeCol’}. Available values:

• FALSE = object is never selected;
• TRUE = object is always selected;
• var_addr = address of boolean variable.

numChars word16 Number of max characters. 0 indicates that the string is drawn with the
entire value of pString.

Output variables — — —

396 9MA10256.04

Functions and Function Blocks for HMI

Image

Image object

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution.

memSel byte Selection status of the previous execution.

Input variables wHnd word16 Handle of the object. Must be unique among image objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

y1 word16 Top-left 'y coordinate' edge relative to full page.

px1 word32 Address of variable for moving image on X-Axis. It is sensible only if
floating = TRUE

py1 word32 Address of variable for moving image on Y-Axis. It is sensible only if
floating = TRUE

type_x byte Type for px1. Available values: tySInt; tyUSInt; tyByte; tyInt;
tyUInt; tyWord; tyDInt; tyUDInt; tyDWord. It is sensible only if
floating = TRUE and px1 <> NULL

type_y byte Type for py1. Available values: tySInt; tyUSInt; tyByte; tyInt;
tyUInt; tyWord; tyDInt; tyUDInt; tyDWord. It is sensible only if
floating = TRUE and py1 <> NULL

dx word16 Width (#pixel).

dy word16 Height (#pixel).

style byte • 0 = flat
• 1 = raised
• 2 = sunken

floating byte Position of object:
• FALSE = docking
• TRUE = floating

bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color. It is sensible when style = 0 bordPts > 0 and not
pSelVar = 1 fixed.

bordSelCol word32 Border color for selected object. It is sensible when style = 0 and
bordPts > 0 and not pSelVar = 0 fixed

accMode byte • kACS_IDLE = no effect
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display
• kACS_QUERY = request for updating output variables
• kACS_BCKQUERY = request for updating output variables when

the object is in background pages
• kACS_DELETE = delete object

pBmp word32 Address of first byte of bitmap to view. It is not sensible if pSelBmp = 1
fixed.

pSelBmp word32 Address of first byte of bitmap to view when selected. It is not sensible
if pSelBmp = 0 fixed.

pSelVar word32 Selection flag for the object. Suggest if the object must uses
{‘bordCol’, ‘pBmp’} or {‘bordSelCol’, ‘pSelBmp’}.
Available values:

• FALSE = object is never selected
• TRUE = object is always selected
• var_addr = address of boolean variable

pVisVar word32 Flag of visibility. Available values:
• FALSE = image not visible
• TRUE = image always visible
• var_addr = address of boolean variable

Output variables reqRefr byte Request refresh, updated when the object is called with accMode =
kACS_QUERY or accMode = kACS_BCKQUERY.

9MA10256.04 397

Functions and Function Blocks for HMI

Image

Image object

I/O Name Type Description

abs_x1 word16 Top-left 'x coordinate' edge relative to full page obtained with the sum
among ‘x1’ and px1’. The value is updated when the object is called
with accMode = kACS_INIT or accMode = kACS_QUERY.

abs_y1 word16 Top-left 'y coordinate' edge relative to full page obtained with the sum
among ‘y1’ and ‘py1’. The value is updated when the object is called
with accMode = kACS_INIT or accMode = kACS_QUERY.

mem_x1 word16 Value read from abs_x1 when the object is called with accMode =
kACS_INIT or accMode = kACS_PRINT.

mem_y1 word16 Value read from abs_y1 when the object is called with accMode =
kACS_INIT or accMode = kACS_PRINT.

Animation

Animation object

I/O Name Type Description

Local variables memBmp word32 Address of bitmap of the previous execution

Input variables wHnd word16 Handle of the object. Must be unique among animation objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full page.

y2 word16 Bottom-right 'y coordinate' edge relative to full page.

style byte • 0 = flat
• 1 = raised
• 2 = sunken

bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color. It is sensible when style = 0 bordPts > 0 and not
pSelVar = 1 fixed

accMode byte • kACS_IDLE = no effect
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display

pBmpArr word32 Address of first image to view.

pCaseArr word32 Address of first element of selection.

nArrEl byte Number of elements in image list.

pBmpDef word32 Address of bitmap to view pSelVar not in pCaseArr.

pSelVar word32 Address of variable for selection.

type byte Type of pSelVar. Available values: tyBool; tySInt; tyUSInt;
tyByte; tyInt; tyUInt; tyWord; tyDInt; tyUDInt; tyDWord.

pVisVar word32 Flag of visibility. Available values:
• FALSE = image not visible
• TRUE = image always visible
• var_addr = address of boolean variable

Output variables — — —

Button02

Button object

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution.

memTransp byte Transparency status of the previous execution.

398 9MA10256.04

Functions and Function Blocks for HMI

Button02

Button object

I/O Name Type Description

memSel byte Selection status of the previous execution.

Input variables wHnd word16 Handle of the object. Must be unique among buttons objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full page.

y2 word16 Bottom-right 'y coordinate' edge relative to full page.

fResStr byte Boolean value:
• FALSE = pString is the address of string to draw
• TRUE = pString is the identifier of resource string

pText word32 Text to draw on the button. It has different meaning according to
fResStr. If this field is NULL, no text is drawn.

pFont word32 Address of font for drawing text. The font must be initialized with
Video_AddFont.

style byte • 0 = flat
• 1 = raised
• 2 = sunken

bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color and text color. It is sensible only if style = 0 and bordPts
> 0, or pString different as NULL, and not pSelVar = 1 fixed.

fillCol word32 Color of button area. It is sensible only if pTransp different as 1 fixed,
and not pSelVar = 1 fixed.

bordSelCol word32 Border color and text color when selected. It is sensible only if style = 0
and bordPts > 0, or pString different as NULL, and not pSelVar =
0 fixed.

fillSelCol word32 Color of button area when selected. It is sensible only if pTransp
different as 1 fixed, and not pSelVar = 0 fixed.

accMode byte • kACS_IDLE = no effect
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display

pVisVar word32 Flag of visibility. Available values:
• FALSE = image not visible
• TRUE = image always visible
• var_addr = address of boolean variable

pTransp word32 Flag of transparency. Available values:
• FALSE = button always solid
• TRUE = button always transparent
• var_addr = address of boolean variable

pPressVar word32 Address of a boolean variable.
• Pressed button= *pPressVar = TRUE
• Released button= *pPressVar = FALSE

If the field is NULL there is no variable.

pSelVar word32 Selection flag for the object. Suggest if the object must uses
{‘bordCol’, ‘fillCol’} or {‘bordSelCol’, ‘fillSelCol’}.
Available values:

• FALSE = object is never selected
• TRUE = object is always selected
• var_addr = address of boolean variable

format word16 Format of numeric values encoded with 16 bit:
• bit 4: 1 = right alignment
• bit 5: 1 = center alignment

9MA10256.04 399

Functions and Function Blocks for HMI

Button02

Button object

I/O Name Type Description

• bit 6: 1 = left alignment

order word16 Number for establishing a sequential selection.

Output variables — — —

EditBox01

Edit object

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution.

wHnd word16 Handle of the object. Must be unique among edit-box objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

Input variables y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full page.

y2 word16 Bottom-right 'y coordinate' edge relative to full page.

pFont word32 Address of font for drawing text. The font must be initialized with
Video_AddFont.

style byte • 0 = flat
• 1 = raised
• 2 = sunken

foreCol word32 Text color.

bckCol word32 Background color.

foreSelCol word32 Text color when selected. It is sensible only if pCanSel is not 0 fixed.

bckSelCol word32 Background color when selected. It is sensible only if pCanSel is not 0
constant.

bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color. It is sensible when style = 0 bordPts> 0

rw byte • FALSE = read-only mode
• TRUE = read-write mode

refr byte Request refresh:
• FALSE = the object is redrawn only when the page is opening or

return from child page
• TRUE = the object is always redrawn

pVar word32 Address of variable or parameter according to format. It cannot be
NULL. If it is a parameter is encoded in this way:

• bit 0...7 = Subindex parameter
• bit 8...23 = IPA parameter
• bit 24...32 = Device address

type byte Type of data. Available values: tyBool; tySInt; tyUSInt; tyByte;
tyInt; tyUInt; tyWord; tyDInt; tyUDInt; tyDWord; tyReal

pVarMin word32 Min value for edit-box variable. If bit 16...17 (LSB) of field format
contains 0 the limit is not set, if contains 1 is a constant limit, if contains
2 it is a variable limit.

pVarMax word32 Max value for edit-box variable. If bit 14...15 (LSB) of field format
contains 0 the limit is not set, if contains 1 is a constant limit, if contains
2 it’s a variable limit.

enumId int16 Identifier of enumerative. If 0 no enumerative associated with this field
exists.

400 9MA10256.04

Functions and Function Blocks for HMI

EditBox01

Edit object

I/O Name Type Description

format word32 View format encoded in 32 bit:
• bit 0
◦ 0 = draw sign only if number is negative
◦ 1 = draw sign also for positive numbers

• bit 1
◦ 0 = does not print most significant null digits
◦ 1 = draw zeroes on most significant null digits

• bit 2
◦ 0 = ‘pVar’ is a variable
◦ 1 = ‘pVar’ is a parameter

• bit 3: 1 = right alignment
• bit 4: 1 = center alignment
• bit 5: 1 = left alignment
• bit 10: Hexadecimal format, with a...f lowercase
• bit 11: Hexadecimal format, with A...F uppercase
• bit 14...15
◦ 0 = no max limit
◦ 1 = constant max limit
◦ 2 = variable max limit

• bit 16...17
◦ 0 = no min limit
◦ 1 = constant min limit
◦ 2 = variable min limit

• bit 24...26: Precision (real numbers)
• bit 27...31: Width

pVisVar word32 Flag of visibility. Available values:
• FALSE = object not visible
• TRUE = object always visible
• var_addr = address of boolean variable

pCanSel word32 Available values:
• FALSE = object not selected
• TRUE = object always selected
• var_addr = address of boolean variable

order byte Number for establish a sequential selection.

accMode byte • kACS_IDLE = no effect
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display
• kACS_SELECT = update draw on display when selected
• kACS_MODIFY = enter in editing mode

Output variables outKey char Key code for exiting editing-mode.

9MA10256.04 401

Functions and Function Blocks for HMI

TextBox

Text box object

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution.

base word16 Number of first line seen in object.

Input variables wHnd word16 Handle of the object. Must be unique among textbox objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full page.

y2 word16 Bottom-right 'y coordinate' edge relative to full page.

pFont word32 Address of font for drawing text. The font must be initialized with
Video_AddFont.

style byte • 0 = flat
• 1 = raised
• 2 = sunken

foreCol byte Text color.

bckCol byte Background color.

bordPts byte Border thickness It is sensible only if style = 0

bordCol byte Border color. It is sensible when style = 0 bordPts > 0

LineNr byte • FALSE = hide line number
• TRUE = show line number

rw byte • FALSE= read-only mode
• TRUE= read-write mode

pVar word32 Address of string variable. It cannot be NULL.

szpVar word32 Size of pVar.

pVisVar word32 Flag of visibility. Available values:
• FALSE= object not visible
• TRUE= object always visible
• var_addr= address of boolean variable

order byte Number for establishing a sequential selection.

accMode byte Access mode. Available values:
• kACS_IDLE = no effect when selected
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display
• kACS_SELECT = update draw on display
• kACS_MODIFY = enter editing mode
• kACS_SCROLLUP = scroll up one line
• kACS_SCROLLDW = scroll down one line

rqCursPos word16 Char Index where move the cursor.

rqCursRow word16 Row to select.

dispCurs byte • TRUE= the cursor is always visible even if it is not enabled
editing mode

• FALSE= the cursor is visible only if it is enabled editing mode

dispRow byte • TRUE= the row selection is always visible even if it is not enabled
editing mode

• FALSE= the row selection is visible only if it is enabled editing
mode

bckSelCol word32 Future developments.

wParam word32 Future developments.

IParam word32 Future developments.

402 9MA10256.04

Functions and Function Blocks for HMI

TextBox

Text box object

I/O Name Type Description

Output variables outKey char Key code for exiting editing-mode.

outCursPos word16 Char index where there is the cursor.

outCursRow word16 Index of selected row.

Progress

Progress bar object

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution

memVal word32 Progress status of the previous execution

Input variables wHnd word16 Handle of the object. Must be unique among progress objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full page.

y2 word16 Bottom-right 'y coordinate' edge relative to full page.

style byte • 0 = flat
• 1 = raised
• 2 = sunken

barCol word32 Color of step bar.

bckCol word32 Background color.

bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color. It is sensible when style = 0 bordPts > 0

pVar word32 Step variable. This is the filling percentage of bar in relation with the
range assigned by pMin and pMax.

type byte Type of pVar. Assigned values: tyBool; tySInt; tyUSInt; tyByte;
tyInt; tyUInt; tyWord; tyDInt; tyUDInt; tyDWord

pMin word32 Min value for edit-box variable. If bit 0 (LSB) of field format contain 0 is
a constant limit, if contain 1 it is a variable limit.

pMax word32 Min value for edit-box variable. If bit 1 (LSB) of field format contain 0 is
a constant limit, if contain 1 it is a variable limit.

format word32 View format encoded in bit:
• bit 0:
◦ 0 = pMin contains a constant value of Type ‘type’
◦ 1 = pMin contains the address of variable of Type ‘type’

• bit 1:
◦ 0 = pMax contains a constant value of Type type
◦ 1 = pMax contains the address of variable of Type type

• bit 2:
◦ 0 = horizontal orientation
◦ 1 = vertical orientation

pVisVar word32 Flag of visibility. Available values:
• FALSE = object not visible
• TRUE = object always visible
• var_addr = address of boolean variable

accMode byte Access mode. Available values:
• kACS_IDLE = no effect
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display

Output variables — — —

9MA10256.04 403

Functions and Function Blocks for HMI

CustomCtrl

Progress bar object

I/O Name Type Description

Local variables memVis byte Visibility status of the previous execution.

ptrFunct word32 Address of function that implements Type wCtrlID.

data0 word32 Local variable.

data1 word32 Local variable.

data2 word32 Local variable.

data3 word32 Local variable.

Input variables wHnd word16 Handle of the object. Must be unique among custom control objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.

y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full page.

y2 word16 Bottom-right 'y coordinate' edge relative to full page.

wCtrlID word16 Identifier of custom control.

pVisVar word32 Flag of visibility. Available values:
• FALSE = object not visible
• TRUE = object always visible
• var_addr = address of boolean variable

refr byte Request refresh:
• FALSE = the object is redrawn only when the page is opening or

return from child page
• TRUE = the object is always redrawn

accMode byte Access mode. Available values:
• kACS_IDLE = no effect
• kACS_INIT = first draw on display
• kACS_PRINT = update draw on display

The value greater than 200 can be used for custom purpose.

wParam word16 16 bit data without sign, used for custom purpose

lParam int32 32 bit data with sign, used for custom purpose

rParam float 32 bit real data with sign, used for custom purpose

Output variable — — —

404 9MA10256.04

Functions and Function Blocks for HMI

Commissioning
What’s in This Part

The Commissioning Tab ... 406
Managing Commissioning Elements .. 409
Debugging... 416

9MA10256.04 405

The Commissioning Tab
What’s in This Chapter

Overview of the Commissioning Window... 406
Menu Bar.. 407
Toolbar ... 407

Overview of the Commissioning Window

General Description
Commissioning is the entry point to deploy projects on real devices.

The following illustration presents the default Commissioning window:

Item Description

1 Toolbar This toolbar shows the tools in form of icons.

For more information, refer to Toolbars, page 407.

2 Commissioning
window

This window shows the configurable BIOS parameters of the target device.

For more information, refer to Content of the Commissioning Window, page 409.

3 Editor window This window allows you to edit the content of the current selection in Commissioning window.

4 Commissioning
Watch window

This window enables you to manage variables debugging by displaying their status in numerical
format when the application is running and connected to the target device.

For more information about how to use the Commissioning Watch window, refer to Commissioning
Watch Window, page 416

Free Studio Plus

Commissioning

BIOS parameters
All parameters

Acknowledgement

FileSystem Volumes

Led & Backlight Values

Application
Web Password

Recipes
Cfg files

Ethernet
Battery Handling
USB-Host and microSD
Protection Password
System Clock Values

Upper Board
Lower Board

I/O Values
Miscellaneous

BACnet
Display
Modem
Ethernet
RS232 Plugin Passive
CAN Plugin Passive
RS485 Plugin Passive
CAN On Board
RS485-2 On Board
RS485-1 On Board
Analogue I/O
Calibration AO
Calibration AI

FreeAdvance

Commissioning

2

Configuration Programming Display

File View Parameters Recipes HelpOptionsTarget

Commissioning

Preprocessing display completed.
Preprocessing Pumping completed.
Preprocessing Communication completed.
Preprocessing Application completed.

0 warnings, 0 errors

Build Find in project Debug Resources HMI Output

Output

Ready EDIT MODE NOT CONNECTED....

Track Min valUm

Commissioning Oscilloscope

Commissioning Watch

Device ValueName

Resources

Firmware version:

PLC application:

Model:

Status:Information NOT CONNECTED

No Application

Undefined IOs

1 3

6

4 5
C:\My Project\My Project.plcprj

406 9MA10256.04

The Commissioning Tab

Item Description

5 Commissioning
Oscilloscope
window

This window enables you to plot the evolution of the values of a set of variables. Being an
asynchronous tool, the Oscilloscope cannot establish synchronization of samples.

For more information about how to use the Commissioning Oscilloscope window, refer to
Commissioning Oscilloscope Window, page 417

6 Output window This window shows the messages relating to the development of the project (file opening, reading/
writing detected faults, status of connection to device, and so on).

NOTE: The connection to the device is also visible in the status bar, page 35.

Menu Bar

Overview
The menu bar of Commissioning tab is composed of these menus:

• File, page 28
• View, page 33
• Parameters, page 30
• Recipes, page 31
• Target, page 32
• Options, page 29
• Help, page 28

Toolbar

Introduction
The toolbar appears at the top of the FREE Studio Plus window to provide access
to frequently used functions.

For generalities of toolbars, refer to Toolbars description, page 34.

Commissioning Toolbar
The Commissioning toolbar has the following buttons:

Icon Description Shortcut

Connects to the target

Starts the communication with the device.

-

Toggle Auto refresh mode

Starts or stops (toggle) the Auto refresh mode.

-

Refresh page

Reloads the values for the current page.

-

Select all parameters

Select all the parameters from the currently displayed parameter table.

Ctrl+A

Read parameter

Read the value of the selected parameters.

Ctrl+R

9MA10256.04 407

The Commissioning Tab

Icon Description Shortcut

Write parameter

Write the value of the selected parameters.

Ctrl+W

Read all

Read all BIOS parameters from the target.

Ctrl+Shift+R

408 9MA10256.04

The Commissioning Tab

Managing Commissioning Elements
What’s in This Chapter

Overview .. 409
Target Device.. 412

Overview

Commissioning Window

Overview
Once the target device is connected, the Commissioning window allows you to:

• Read and write one or more BIOS parameters,
• Modify and restore the BIOS parameters to default,
• Read the current value of application variables (but not modify them).

NOTE: These variables can be displayed by dragging them to the Watch
and Oscilloscope windows.

Content of the Commissioning Window
The Commissioning window consists of the following items:

Item Icon Description

Target device Shows the picture of the target device and allows you to configure some settings.
NOTE: For more information, refer to Target Device, page 412.

BIOS parameters Shows the list of BIOS settings that you can modify.

Application Shows the menu list.
NOTE: For more information, refer to Target Menus, page 62.

Cfg files Shows the CONNEC.PAR configuration file.
NOTE: To download this file to the target device, right-click on Cfg files and click
Download files.

Recipes Shows the list of recipes.
NOTE: You can add a parameter directly to a recipe by dragging and dropping.

NOTE: The Commissioning window content depends on the selected
device.

Match Software and Hardware Configuration
The I/O that may be embedded in your controller is independent of the I/O that you
may have added in the form of I/O expansion. It is important that the logical I/O
configuration within your program matches the physical I/O configuration of your
installation. If you add or remove any physical I/O to or from the I/O expansion
bus, then you must update your application configuration. This is also true for any
field bus devices you may have in your installation. Otherwise, there is the
potential that the expansion bus or field bus no longer function while the
embedded I/O that may be present in your controller continues to operate.

9MA10256.04 409

Managing Commissioning Elements

WARNING
UNINTENDED EQUIPMENT OPERATION

Update the configuration of your program each time you add or delete any type
of I/O expansions on your I/O bus, or you add or delete any devices on your
field bus.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Expansion Bus
You must monitor within your application the state of the bus and the error state of
the module(s) on the bus, and to take the appropriate action necessary given your
particular application.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Include in your risk assessment the possibility of unsuccessful

communication between the logic controller and any I/O expansion modules.
• Monitor the state of the I/O expansion bus using the dedicated %SW system

words and take appropriate actions as determined by your risk assessment.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Read and Write BIOS Parameters

Overview
The term “parameter” refers to any resource present on the target device:
parameters, I/O, and variables of the application.

By default, the project contains a list of the BIOS parameters and I/O values with
their respective default settings.

Read Parameters
From the target device, you can read the parameters.

To read a parameter, select it and click the R icon.

410 9MA10256.04

Managing Commissioning Elements

To read the parameters, click Parameters > Read all. The operation takes a few
seconds.

The default value of the analog inputs and outputs is 0.0. The digital inputs and
outputs are set to FALSE.

Write Parameters
You can download the parameters to the target device, either with their default
values or with modified values inserted by you.

To write a parameter, select it and click the W icon.

To download the parameters (local BIOS), click Parameters > Select all or click
Select all parameters icon. The parameters are highlighted in yellow. Then, click

Parameters > Write selected or click the Write parameter icon. The
parameters are downloaded to the target device.

Downloading the parameters by clicking Parameters > Write all replaces the
values present on the target device with the values listed in the Value column.

If you select Parameters > Write all default values, the default values including I/
O is downloaded to the target device.

Color Rules of Values
The inputs are read-only and are shown in gray. See the following table of
parameter values:

Color Column Description Cases

Black Value Value aligned with default Target already read

Blue Default Default column value different from value in value
column

Target already read

Red Value Value NOT aligned with default Device just opened value
changed by you

Gray Name Read-only parameters I/O values analog inputs AI
digital inputs DI

Green Name Parameters not visible on target display (only for
FREE Smart)

See visibility table

Configuration Programming Display Commissioning

Ready READ ONLY DIFF. CODE CONNECTED

Commissioning

File Parameters Recipes HelpOptionsTargetView

Commissioning
FreeAdvance

BIOS parameters
All parameters
I/O Values
Led & Backlight Values
System Clock Values
Protection Password
USB-Host and microSD
Battery Handling
Ethernet

Application
My Project

General
Pumps
Circuit1

Circuit2

CompressorsCir1
FansCir1

FansCir2

EEVCir1

EEVCir2
Alarms

CompressorsCir2

Resources*

COMPRESSORSCIR2
Address

9492
9435
9462
9466
9509
9519
9527
9535
16464
16480
9493
9436
9463
9467
9510
9520
9528

False
0.0
False
False
False
0
0

False
False
False
0
0

False

False
False
False
0
0

0
0
False
0.0
False
False
False
0
0

%

s
s

s
s

xComp1Cir2
iComp1Cir2
xAlarmComp1Cir2
xOilPressSwitchComp1Cir2
xCmdOpHoursResetComp1Cir2
uiElapsedOnTimeComp1Cir2
uiElapsedOffTimeComp1Cir2

xComp2Cir2
iComp2Cir2
xAlarmComp2Cir2
xOilPressSwitchComp2Cir2
xCmdOpHoursResetComp2Cir2
uiElapsedOnTimeComp2Cir2
uiElapsedOffTimeComp2Cir2

uiElapsedCycleTimeComp1Cir2
E2_udiOpHoursComp1Cir2
E2_udiNbStarsComp1Cir2

Name Value Um Default

C:\My Project\My Project.plcprj

Cancel

Reading parameters...

336 / 1410

Free Studio Plus

9MA10256.04 411

Managing Commissioning Elements

m171ohg::/#D-SE-0067117

Target Device

Overview

Description
In the Commissioning window, double-click the title of the project to display the
editor window.

The editor window presents the graphic of the target device and lets you access
some settings.

These settings may differ depending on the target device chosen for the project.

General

Overview
The General box displays the name of the project target device and the version
number of its excepted firmware.

Communication

Overview
The Communication box displays information about the communication between
the PC and the target device (protocol, address, port, and baud rate).

Communication Settings
To modify the communication settings, click the Settings button or click Target >
Communication settings.

General Name: FreeAdvance

596.11
version:

File

Communication Protocol: SettingsModbus

COM:4

38400

1Address:

Port:

Baud rate:

412 9MA10256.04

Managing Commissioning Elements

To modify the communication protocol, select the desired protocol in the
Protocols list and click the Activate button.

The communication modalities can be modified by clicking the Properties button.

For more information on how to establish communication between FREE Studio
Plus and the target device, refer to Setting Up the Communication, page 176.

Information

Overview
The Information box displays the information of the device connected to the PC
(firmware version, current device application, and model).

NOTE: Make sure the firmware version installed on the target device matches
the firmware version used by the project. For more informations, refer to Other
Operations, page 414.

Modbus Config 11.1.0.0

Communication

Protocol

Port

Baudrate

Modbus Address

Timeout

1

1000Modbus ASCII

Server name

Dial number

Jbus

Enable remote communication

Frame settings

RS-422 mode

COM4

N.8.1

38400

Enable modem communication

OK Cancel

Information Status:

Firmware version:

PLC application:

Model:

My Project

Display 42 IOs

596.11

CONNECTED

9MA10256.04 413

Managing Commissioning Elements

Download Settings

Overview
The Download settings box displays where data is downloaded.

To modify the data download location, select from the drop-down list Use manual
settings and choose:

• NOR: to download to internal memory,
• SD: to download to SD card.

Two additional options are available:
• Reset binding configuration: remove the bindings defined in the installer,
• Align Target RTC: align controller clock with PC clock.

Other Operations

Overview
The Other operations box allows you to perform the following actions:

Action Goal

BIOS download Update the BIOS of the target device using a *.bin file.

Open file browser Explore the storage space of the device through a Windows
Explorer.

Web site download Downloads webpages created in the project by user.

Web site preview Preview created webpages.

Generate XIF file Create a *.xif file which needs to be manually transferred to
the target device.

NOTE: The XIF is a text-based file that defines the
network image of the device to a network management
tool (for example, Niagara, LonMaker, and so on). The
XIF along with files termed device resource files (DRFs)
are used by the management tools to work with the LON
device.

Generate parameters files Create parameters files Param.dat, Param.raw and Param.
csv.

Generate USB files on target Force target controller to generate Param.dat and Param.bin
directly in an USB memory key connected to the port.

NOTE: The controller must be powered to allow for this
feature.

Download settings

PLC

HMI

HMI Remote

Cfg files

Web site

Reset binding configuration

Align Target RTC

Use manual settings

NOR SD

414 9MA10256.04

Managing Commissioning Elements

Action Goal

Import parameters files Allows to import a pre-generated parameters file in the target
controller.

NOTE: After import procedure the software asks to
generate a recipe in the project.

Create USB programming files Create a backup of the project for later restore.

Bios Download Feature
If an incorrect firmware is downloaded into a device, the device could be
damaged.

9MA10256.04 415

Managing Commissioning Elements

Debugging
What’s in This Chapter

Overview .. 416
Commissioning Watch Window .. 416
Commissioning Oscilloscope Window... 417

Overview

Description
FREE Studio Plus provides several debugging tools, which help you to verify
whether the application behaves as intended.

These debugging tools basically allow you to watch the value of selected variables
while the PLC application is running.

Commissioning debugging tools are asynchronous debuggers. They read the
values of the variables you selected with successive queries issued to the target
device. Both the manager of the debugging tool (that runs on the PC) and,
potentially, the task which is responsible to answer those queries (on the target
device) run independently from the PLC application. The values of two distinct
variables being sampled in the same moment are not necessarily in concordance
with each other with respect to the PLC application execution (one or more cycles
may have occurred). For the same reason, the evolution of the value of a single
variable is not consistent with its actual value in the controller memory, especially
when it is updated rapidly within the application.

This chapter presents how to debug your application using debugging tools.

Commissioning Watch Window

Description
The Watch window allows you to monitor the values of a set of variables. Being an
asynchronous tool, the Watch window does not establish synchronization of
values. Values of the variables in the Watch window may refer to different
execution cycles of the corresponding task.

The Watch window contains an item for each variable that you added to it. The
information displayed in the Watch window includes the name of the variable, its
value, its type, and its location in the PLC application.

For more information about the Commissioning Watch window, refer to Watch
Window, page 194.

NOTE: The functions available in the Programming Watch window are only
available for variables with Modbus address (EEPROM Parameters, Status
variables, and BIOS Parameters).

Commissioning Watch

Device Name Value Subldx Um Description

416 9MA10256.04

Debugging

Commissioning Oscilloscope Window

Description
The Oscilloscope allows you to plot the evolution of the values of a set of
variables. Being an asynchronous tool, the Oscilloscope cannot establish
synchronization of samples.

Oscilloscope window is an interface for accessing the debugging functions that
the Oscilloscope makes available:

The Oscilloscope consists of three elements:
• The toolbar allows you to control the Oscilloscope.
• The Chart area includes several items:
◦ Plot: area containing the curve of the variables.
◦ Vertical cursors: cursors identifying two distinct vertical lines. The values

of each variable at the intersection with these lines are reported in the
corresponding columns.

◦ Scroll bar: if the scale of the x-axis is too large to display all the samples in
the Plot area, the scroll bar allows you to slide back and forth along the
horizontal axis.

• The lower section of the Oscilloscope is a table consisting of a row for each
variable.

For more information about Commissioning Oscilloscope window, refer to
Oscilloscope, page 200.

NOTE: The functions available in the Programming Watch window are only
available for variables with Modbus address (EEPROM Parameters, Status
variables, and BIOS Parameters).

Commissioning Oscilloscope

Track Um Min value Max value Cur value Value/Div Description

9MA10256.04 417

Debugging

Appendices
What’s in This Part

Installer Pro Project .. 419
Televis Driver Generation.. 433

418 9MA10256.04

Installer Pro Project
What’s in This Chapter

Overview .. 419
Compatibility Range .. 419
Installer Pro Project Features ... 420

Overview
Installer Pro project is an additional feature which implements new functionalities
in Free Studio Plus.

Installer Pro project is activated in the Configuration page by clicking on Project >
Options > Installer Pro project in the menu toolbar.

Con�guration options

Installer Pro project Enable

EnableTelevis driver generation

OK

NOTE: In order to enable/disable the Installer Pro project it is first necessary
to remove all the expansions in project.

Compatibility Range
Installer Pro project is compatible with the following products:

Reference Description

AV•126•0•I500 FREE Advance AV••••••5•500 Logic Controller

AV•126•060500 FREE Advance AV••••••6•500 Logic Controller

EWCM 9000 PRO (HF) EWCM 9000 PRO (HF) Logic Controller

Reference Description

EVE4200 FREE Expansion EVE4200

EVE1020000500 FREE Expansion EVE10200

EP4000000B0 EWCM Expansion EP4000

NOTE: All the I/O Expansions must be of the same type, otherwise a compilation error is
generated.

9MA10256.04 419

Installer Pro Project

Installer Pro Project Features
By enabling Installer Pro Project flag additional columns in the parameter grid
are shown in Commissioning and Installer pages:

Column Label Description

1 Label In the Label column can be filled the Label code, without spaces or special characters. If the cell is left
empty the values will automatically be overwritten with the value in Name column.

2 Unit par Folder These columns allow to organize parameters in easier viewing folders which has been previously
created.

Refer to PLC Parameters Navigation Tree, page 421
3 Unit par Sub

Folder

4 I/O Type This column defines the type of input/output related to the selected parameter; it can be AI, AO, DI or
DO. This definition is useful for the new feature I/O Definition

Refer to I/O Definition, page 421 for more information on the I/O Definition.

5 Softscope This column enables the related parameter to be recorded and viewed with the Softscope
commissioning tool.

Refer to Softscope, page 427.

Softscope
False
False

False
False

False
False

False
False

False
False

True

True

True

IO TypeUnit par Sub FolderUnit par FolderLabel
SYSTEM01.002-Sbp

01.003-LFr

01.004-Ert
01.005-rot

01.006-rSE

01.007-rdi
01.008-ECS

01.009-ECd

01.010-Att
01.011-En

01.013-tr1

01.014-Sr1
01.015-dr1

SYSTEM

SYSTEM
SYSTEM

SYSTEM
SYSTEM

SYSTEM
SYSTEM

SYSTEM
SYSTEM

SYSTEM
SYSTEM

SYSTEM

GENERAL
GENERAL

GENERAL

GENERAL
GENERAL

GENERAL
GENERAL
GENERAL

GENERAL

CONFIGURATION

CONFIGURATION

CONFIGURATION

CONFIGURATION

Furthermore Installer Pro Project flag enables additional button :

Button Description

Add I/O Adds an input/output variable. A couple of parameters with consecutive address
are created.

Fix I/O Allows to modify an existing input/output variable. The couple of parameters
related to the variable must be selected in order to modify the variable.

Fix Codes Allows to regenerate the Description Code of an inserted description if it is
present in the Eliwell dictionary or in the custom dictionary (Custom Dictionaries,
page 439).

Translate The Translate button translates the Description column into the selected software
language, where it is possible.

Add Add Multiple Remove Recalc Add I/O Fix Description languageFix I/O Fix Codes

EEPROM PARAMETERS

420 9MA10256.04

Installer Pro Project

PLC Parameters Navigation Tree
Unit parameters Folder and Sub-folder allow the automatic generation in
Commissioning page of a tree menu with selected and organized PLC
parameters.

NOTE: Label and Description fields must be filled for a correct visualization.
Unit parameters Folder and Sub-folder values must be previously created.

Add

UNIT PARAMETERS FOLDER
Remove

1

2

3

4

5

6

7

8

9

10

Name

SYSTEM

L1

L2

L3

HP

GC

HR1

HR2

RECEIVER

HE

As in Configuration page parameters have been organized in Folder and Sub
Folders, in Commissioning window these parameters can be easily viewed by
clicking on the related parameters Folder. That grants a easier and faster
modifying of project settings (for example Compressors parameters can be
organized all together in a folder).

UNIT PARAMETERS: SYSTEM GENERAL
Commissioning

BIOS parameters
All parameters

Acknowledgement

FileSystem Volumes

Led & Backlight Values

Application
Web Password

Msk808

SYSTEM

CONFIGURATION

Ethernet
Battery Handling

USB-Host and microSD
Protection Password
System Clock Values

Upper Board
Lower Board

I/O Values
Miscellaneous

BACnet

Display
Modem

Ethernet
RS232 Plugin Passive

CAN Plugin Passive
RS485 Plugin Passive
CAN On Board
RS485-2 On Board
RS485-1 On Board
Analogue I/O
Calibration AO

Calibration AI

EWCM 9000 PRO

Commissioning

ALARMS

GENERAL

Address

9492

9435

9462

9466

9509

9519

9527

9535

16464

16480

9493

9436

9463

9467

9510

9520

9528

01.003-LFr

01.004-Ert

01.005-rot

01.006-rSE

01.007-rdi

01.008-ECS

01.009-ECd

01.010-Att

01.013-tr1

01.014-Sr1

01.016-tr2

01.017-Sr2

01.019-tr3

01.020-Sr3

01.012-CnSt

01.025-1PAm

01.026-1PCH

Line frequency

Select refrigerant type

Compressors activation policy

Engine room temperature set

Engine room temperature differ

Electrical cabinet temperature s

Electrical cabinet temperature d

Alarms mode (absolute or relati

General purpose regulator GP1

General purpose regulator GP1

General purpose regulator GP2

General purpose regulator GP2

General purpose regulator GP3

General purpose regulator GP3

Next compressor start delay

General purpose regulator PID

General purpose regulator PID

per_BOOL_Line_Frequency

per_UINT_Refrigerant

par_BOOL_Compr_Policy

par_INT_MachineRoom_Temp_Set

par_INT_MachineRoom_Temp_Diff

par_INT_ElectricalCabinet_Temp_Set

par_INT_ElectricalCabinet_Temp_Diff

per_UINT_OnOffRegulator2_Mode

per_INT_OnOffRegulator2_Set

per_UINT_OnOffRegulator3_Mode

per_INT_OnOffRegulator3_Set

par_UINT_CompNxtStart_Time

par_UINT_GPRegulator01_PID_ActivationMode

par_UINT_GPRegulator01_PID_CoolHeat

per_BOOL_ABS_Rel_Alarm

per_UINT_OnOffRegulator1_Mode

per_INT_OnOffRegulator1_Set

Name Label Description

I/O Definition
I/O Definition is a tool implemented to simplify the assignment of machine inputs
and outputs.

I/O Definition can be correctly used only if the allocation parameters have been
previously declared.

9MA10256.04 421

Installer Pro Project

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type Allocation Delete

13.001-01P Engine room tem AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet t

General purpose re

General purpose re

General purpose re

General purpose re

General purpose re

General purpose re

General purpose re

General purpose re

General purpose re

L1 line suction pre

L2 line suction pre

L2 line suction pre

L2 line suction tem

L2 line discherge t

L2 line discherge t

L1 line suction pre

L1 line suction pre

L1 line suction pre

L1 line discharge t

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
d c

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

New Project
In case of a new project use the Add I/O button to add an input/output parameter.
A couple of parameters will be created with consecutive address and I/O Type
selected, for example:

• Par_Alloc1_Exp
• Par_Alloc1_Num

Add I/O parameters

Name: Par_Alloc1

CancelOK

Label: Parametro Allocazione

I/O type: Analog Input

EEPROM PARAMETERS
Add Add Multiple Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

1

2

3

4

5

6

7

8

9

10

Address Name Installer type IEC ype Size

18061

18062

18063

18064

18065

18066

18067

18068

18069

18070

par_UINT_StopH

par_UINT_StopM

par_INT_MinParTemp

par_INT_MaxParTemp

par_UINT_Aux1_Prof

par_UINT_Aux2_Prof

par_UINT_Aux3_Prof

par_UINT_Aux4_Prof

par_Alloc1_Num

par_Alloc1_Exp

Unsigned 16-bit UINT

UINT

UINT

UINT

UINT

UINT

INT

INT
INT

INT

Unsigned 16-bit

YesNo

YesNo

YesNo

YesNo

Signed 16-bit

Signed 16-bit

Signed 16-bit

Signed 16-bit

Fill in the empty fields in the parameter grid to correctly define parameters and
compile the project.

After compiling the project the newly created logic I/O is added to the I/O
Definition tool.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

Parametro Allocazione1

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

Parametro Allocazi

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

Existing Project
In case of an existing project to change a input/output variable it must be used the
Fix I/O button.

422 9MA10256.04

Installer Pro Project

Select the couple of parameters (one ending with _Exp and one ending with
_Num) and press the Fix I/O button. In the triggered window select the I/O type.

The selected type of I/O will be associated with the couple of parameters and it will
be automatically filled the I/O Type column value.

Fix I/O parameters

CancelOK

I/O type: Analog Input

Fill in the blank fields in the parameters grid, then recompile the project.

After compiling the project the modified logic I/O will be updated into the I/O
Definition tool.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

Parametro Allocazione1

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

Parametro Allocazi

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15
C

12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

Allocation of I/O
To allocate I/O parameters drag the logical I/O from the left grid onto the desired
connector screw.

The tooltip indicates that the assignment has been done.

9MA10256.04 423

Installer Pro Project

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

AI3 (2=NTC(103AT))
Engine room

temperature probe

The pair of allocation parameters (_Exp and _Num) is updated automatically.

Double clicking on a AI screw displays the parameter BIOS CFG_AIX allocated,
where it is possible to change its value.

Limitations
The I/O Definitions has the following limitations:

• It is necessary to drag an I/O logic from the grid to the screw in
correspondence with an I/O of the same type. For example, you cannot drag
an I/O declared DO onto a DI position.

• It is possible drag a DI to an AI if the corresponding BIOS parameter
configures it as a DI.

• An AI can be dragged onto a screw corresponding to an AI as long as the AI
is not configured as DI. For example, you can allocate a temperature probe
even if the AI = 4-20 mA.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

AI3 (2=NTC(103AT))
Engine room

temperature probe

• Error conditions are indicated with the screw in red.

424 9MA10256.04

Installer Pro Project

• Warning conditions are indicated with the screw in orange.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

If more logical outputs are assigned to the same DO, an error condition is
signaled.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

DO1:
Heat exchanger digital

output,
Oil valve digital

output

If more logical inputs (AI or DI) are assigned to the same physical input, a warning
condition is signaled.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

AI3 (2=NTC(103AT))
Engine room

temperature probe,
Electrical cabinet

temperature probe

9MA10256.04 425

Installer Pro Project

Another error condition can occur if user double-clicks a screw to modify the
corresponding BIOS parameter in the parameter grid with an incompatible I/O
type. For example an AI, previously configured as NTC, is changed into DI, when
getting back to I/O Definition page it will be triggered an error message, shown by
a red screw, and the tooltip highlights an incompatible pin configuration.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS CPU SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
dc

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5 V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

Incompatible pin
con�guration for:

Engine room
temperature probe

AI1 (1=DI):
Engine room

temperature probe

Address Default

15726

SEARCH RESULT
Name Value Um

Cfg_AI1 num 2=NTC(103AT)1=DI

Address Name Value Um Default

15726 Cfg_AI1 num 2=NTC(103AT)1=DI

To delete an allocation:
• Double click on the Delete button corresponding to the I/O to be de-allocated.
• The screw automatically turns white.
• This operation must be done for each single I/O.

426 9MA10256.04

Installer Pro Project

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI AI1 (Board)

AI3 (Board)AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Allocation Delete

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

Delete

Delete

In the summary page it is possible to print the summary of the allocation.

I/O DEFINITION EWCM9000PRO 644
I/O PARAMETERS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Label Description Type

13.001-01P Engine room temperature AI AI1 (Board)

AI3 (Board)AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

AI

Allocation Delete

Electrical cabinet temperature

General purpose regulator

General purpose reglator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulator

General purpose regulatore

General purpose regulator

General purpose regulator

General purpose regulator

L1 line suction pressure

L2 line suction pressure

L2 line suction pressure

L2 line suction temperature

L2 line discharge temperature

L1 line suction pressure

L1 line suction pressure

L1 line suction pressure

L1 line discharge temperature

13.002-02P

13.003-03P

13.004-04P

13.005-05P

13.006-06P

13.007-07P

13.010-08P

13.013-09P

13.016-10P

13.019-11P

13.022-12P

13.025-13P

13.028-14P

13.029-15P

13.032-16P

13.033-17P

13.036-18P

13.039-19P

13.040-20P

13.043-21P

Parameter description...

Delete

Delete

CPU SUMMARY

EWCM9000PRO 644

Electrical cabinet temperature probe AI3

AI2Engine room temperature probe

Print

Softscope
This function is available only for BIOS version 644, Installer Pro Project flag
enables the use of the Softscope tool.

9MA10256.04 427

Installer Pro Project

STATUS: RT ACQUIRE + + Sampling period (s) 1

SOFTSCOPE

13/11/2018-19:36:40·····13/11/2018-19:38:09·····13/11/2018-19:39:38·····13/11/2018-19:41:08·····13/11/2018-19:42:38·····13/11/2018-19:44:07·····13/11/2018-19:45:36·····13/11/2018-19:47:06·····13/11/2018-19:48:35·····13/11/2018-19:50:04·····13/11/2018-19:51:34

Track Um Min value Maxvalue Cur value Description

par_INT_MachineRoom_... 0.0 0.0 0.0 Engine room temp...
AI_T_MachineRoom_... 0.0 0.0 0.0 Engine room temp...

The Softscope tool allows to plot and record the evolution of the selected set of
variables in real time for a period (maximum 48 hours). While the Oscilloscope
tool reads the quantities asynchronously, Softscope reads the selected quantities
with a set frequency, up to 10 tracks, at the same instant.

Recorded data can be saved as graphs and analyzed later, when the controller is
offline.

Commissioning Softscope Window

Description

The variables viewed and recorded through the SoftScope must be declared in
the SoftScope Column as True in Configuration page.

EEPROM PARAMETERS
Add Add Multiple Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

1

2

3

4

5

6

7

8

9

10

Unit par Folder Unit par Sub Folder IO Type SoftScope

installer PRO columns Televis columns

SYSTEM GENERAL False

SYSTEM GENERAL False

SYSTEM GENERAL False

SYSTEM GENERAL False

SYSTEM GENERAL True

SYSTEM GENERAL False

SYSTEM GENERAL True

SYSTEM GENERAL False

SYSTEM GENERAL False

SYSTEM CONFIGURATION False

GENERAL False

GENERAL False

GENERAL True

GENERAL False

GENERAL

GENERAL False

GENERAL False

CONFIGURATION False

True

The Softscope consists of three elements:

428 9MA10256.04

Installer Pro Project

• The toolbar allows to control the Softscope.

Button Function

Start/stop data recording on the controller.

Start/pause the display of currently acquired data in the main
graph.

Save the acquired data in a OSCX file.

Add a track to be recorded.

Remove the selected track from the list of tracks to be
recorded.

Remove all tracks from the list of tracks to be recorded.

Show/hide more information on the recording interval.

Show/hide the track acquisition points.

Display all recorded tracks as separate in the graph.

Scaling functions to resize the trends in the graph.

+ + Zooming functions

Sampling period (s) Data sampling interval in seconds

• The Chart area includes several items:
◦ Plot: area containing the curve of the variables.
◦ Vertical cursors: cursors identifying two distinct vertical lines. The values

of each variable at the intersection with these lines are reported in the
corresponding columns.

◦ Scroll bar: if the scale of the x-axis is too large to display all the samples in
the Plot area, the scroll bar allows you to slide back and forth along the
horizontal axis.

• The lower section of the Softscope is a table consisting of a row for each
variable.

Softscope Communication Status

Status Description

IDLE FREE Studio Plus is ready to start date
recording.

NOT CONNECTED FREE Studio Plus is not connecting to the
controller.

RT ACQUIRE FREE Studio Plus is displaying the data
recorded by the controller.

RECORDING The connected controller is recording the data
for the selected tracks.

UNDEFINED FREE Studio Plus cannot connect to the
controller.

Quick Start

To start using the Softscope it is necessary to:
1. Connect to the target.

2. Add an available track by clicking .
3. Define the sample period and start recording the acquisition.

NOTE: The target records the tracks autonomously in his own memory.

9MA10256.04 429

Installer Pro Project

4. Press to view the tracks in real time. Press to suspend the tracks in real
time. Press to start/stop recording data.

5. Save these settings to reuse the same set of measures in the next recording
session.

It is possible to keep an acquisition running just by leaving the target in RT_
ACQUIRE. Then it is possible to close Free Studio Plus application for the
necessary amount of time. While restarting Free Studio Plus and opening the
initial project, the system remembers the activation of RT_ACQUIRE and it is
possible to resume the tracks by pressing .

NOTE: Tracks can be saved into files (with *.OSCX extension); saved traces
can be viewed with Offline Graph Viewer feature in Free Studio Plus.
NOTE: The storage capacity is 432.000 samples, that means 10 tracks every
second for 12 hours, as well as 1 track every second for 5 days.

Automatic Generation of Expansion Code
Installer Pro Project allows an easier addition of a CAN expansion to the project.

When an expansion is added a set of field variables linked to the AI, DI, AO, DO of
the expansion is automatically generated.

Furthermore a program is automatically generated and added to the INIT task,
though it is undetectable.

This program sends the values of the PLC parameters CFG_AIx and CFG_AOx
to the expansions.

NOTE: It must be created a new parameter which will state the number of
expansions required. This parameter is limited by the number of physical
expansions in the CAN network, therefore it cannot be greater than the
number of expansions. There can be up to 12 expansions. The CAN address
of the expansion is automatically assigned.

CAN EXPANSION BUS
Mode

Baud rate

Master Settings

Installer Pro Settings

Master (for field)

Not used

Node ID (1...122,125):

Expansion number par:

125 ?

Sync Cycle (ms): 0

Heartbeat time (ms): 0

Sync COBID: 128

125 Kb/s

50 Kb/s

250 Kb/s

500 Kb/s

...par_UINT_Exp_Number

To add an expansion follow the same procedures as in Using an Expansion
Module as CAN Expansion Bus Field Slave, page 69, except for the configuration
of DIGITAL I/O and ANALOG I/O.

430 9MA10256.04

Installer Pro Project

In the new DIGITAL I/O tab are showed the field variables relating to DI and DO
generated variables.

EXPANSION EVE 4200 DIGITAL I/O CONFIGURATION
GENERAL DIGITAL I/O ANALOG I/O ADVANCED SETTINGS

Digital INPUTS PLC Var

DΙ1

DΙ2

DΙ3

DΙ4

xExp002Di01

xExp002Di02

xExp002Di03

xExp002Di04

Digital OUTPUTS

DΙ1

DΙ2

DΙ3

DΙ4

PLC Var

xExp002Do01

xExp002Do02

xExp002Do03

xExp002Do04

A set of CFG_AIx and CFG_AOx parameters will be automatically created, and
Folder and Sub Folder fields are default assigned. Folder will be BIOS and Sub
Folder will be CONFIG AI or CONFIG AO

Instead of indicating the value of the CFG_AIx or CFG_AOx parameter to be sent
via CAN message to the expansion, will be indicated the name of the PLC
parameter and field variable just created.

User just need to configure the variable settings linked to the automatically
created expansion parameters which will exchange the information via CAN bus
with the controller

EXPANSION EVE 4200 ANALOG I/O CONFIGURATION
GENERAL DIGITAL I/O ANALOG I/O ADVANCED SETTINGS

Analog OUTPUTS #1, #2

Analog INPUTS

Analog INPUT #1

PLC Var

A01 ixExp002Ao01

ixExp002Ao02A02

Temp UM 0 = °C

Con"guration con"gured by E2_uiExp002CfgAi0Ai02

PLC Var

Al1 ixExp002Ai01

Full Scale Min 0

Analog INPUT #2

Digital OUTPUTSDigital OUTPUTS

Full Scale Max 1000

Calibration 0

Sub

Con"guration
3 = Low Pass Filter enabled, analog value converted

Con"guration con"gured by E2_uiExp002CfgAi01Ai02

PLC Var

AΙ2 iExp002Ai02

Full Scale Min 0

Full Scale Min 1000

Calibration 0

Sub

Con"guration
3 = Low Pass Filter enabled, analog value converted

Analog INPUT #3 Con"guration con"gured by E2_uiExp002CfgAi03Ai04

Default values are assigned to Name, Description and Label fields of auto-
generated CFG_AIx and CFG_AOx parameters, while the auto-generated code is
not visible.

9MA10256.04 431

Installer Pro Project

EEPROM PARAMETERS
Add Add Multiple Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

1680

1679

1678

1677

1676

1675

1674

1673

1672

1671

Address Name Installer type IEC ype Size

18061

18062

18063

18064

18065

18066

18067

18068

18069

18070

par_UINT_StopH

par_UINT_StopM

par_INT_MinParTemp

par_INT_MaxParTemp

par_UINT_Aux1_Prof

par_UINT_Aux2_Prof

par_UINT_Aux3_Prof

par_UINT_Aux4_Prof

E2_uiExp001CfgAi01Ai02

E2_uiExp001CfgAi03Ai04

Unsigned 16-bit UINT

UINT

UINT

UINT

UINT

UINT

INT

INT
UINT

UINT

Unsigned 16-bit

YesNo

YesNo

YesNo

YesNo

Signed 16-bit

Signed 16-bit

EVE Analogue input con!guration

EVE Analogue input con!guration

NOTE:
• Removing an expansion removes alto auto-generated parameters and

codes.
• All the expansions must be of the same type, otherwise a compilation

error will be triggered.
• When one or more expansions are removed from the physical CAN

network, the system asks to limit, if necessary, the PLC parameter that
indicates the number of expansions.

• The Installer Pro Project flag cannot be changed if there are expansions
in the CAN network. In order to disable or enable the Installer Pro
Project flag it is first necessary to remove all the expansions.

Application

OK

ERROR: this project contains CANopen slaves. Please remove
them before change this option.

432 9MA10256.04

Installer Pro Project

Televis Driver Generation
What’s in This Chapter

Overview .. 433
Configuration Page Layout... 434
Projects Outputs ... 440

Overview
With the activation of the Televis driver generation it is possible create the
drivers required by supervisors, Televis Go and Televis Air, to automatically read
the parameters.

To create the drivers Developer > Build Televis Driver.

Televis Driver Generation is activated in the Configuration page by clicking on
Project > Options > Televis driver generation in the menu toolbar.

Con�guration options

Installer Pro project Enable

EnableTelevis driver generation

OK

By enabling Televis driver generation flag additional columns in the parameter
grid are shown in Commissioning and Installer pages:

Column Description

1 Progressive In the Description column some strings have the symbol {0}. If one of these descriptions is chosen,
the symbol is replaced by the supervisors with the number written in the Progressive column.

2 Description Code The Code Description column cannot be changed. It represents the identification code of the string in
the Description column.

3 Label In the Label column can be filled the Label code, without spaces or special characters. If the cell is left
empty the values will automatically be overwritten with the value in Name column.

4 Groups The Groups column allows to insert groups to which the parameter belongs. It is accessed via a
modal window. One or more groups can be entered and they can be selected from the groups of the
Eliwell dictionary and from the strings of the custom dictionary (refer to Custom Dictionaries, page
439).

5 Groups Code The Groups Code column cannot be changed. It represents the identification code of the string in the
Groups column.

6 Measurement Unit Values in the Measurement Unit column can only be filled by the related modal window. It can be a
fixed unit of measure that can be chosen between the units of measure in the Eliwell dictionary and
between the strings of the custom dictionary, or it can be a variable unit of measure conditional on the
value of another variable. If the the value in the column is left empty it will automatically be overwritten
by Unit column value, if present, otherwise it will just be “num”.

7 Measurement Unit
Code

The Measurement Unit Code cannot be changed. It represents the identification code of the string in
Measurement unit column.

8 Visibility Values in the Visibility column can be True or False. If True, the parameter is exported to the Televis
driver, otherwise if False, the parameter is not exported to the Televis driver.

9MA10256.04 433

Televis Driver Generation

1

2

3

4

5

6

7

8

9

10

Groups Code Meausement Unit Meausement Unit Code Visibility

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

PGR00166;PGR00196

num

HZ

num

num

INT(VMU00000,{1

INT(VMU00000,{1

INT(VMU00000,{1

INT(VMU00000,{1

!ag

num

FIX(VMU00020)

FIX(VMU00010)

FIX(VMU00020)

FIX(VMU00020)

INT(VMU00000,{1=VMU00

INT(VMU00000,{1=VMU00

INT(VMU00000,{1=VMU00

INT(VMU00000,{1=VMU00

FIX(VMU00021)

FIX(VMU00020)

True

True

True

True

True

True

True

True

True

True

Progressive

1

Description Code

INO00184

STA00400

STA40196

AIM00430

Label

01.002-SbP

01.003-LFr

01.004-Ert

01.005-rot

Groups

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

Impianto;Impianto - funzion

01.006-rSE

01.007-rdi

01.008-ECS

01.009-ECd

01.010-Att

01.011-En

INO00181

STI00314

STA20124

AIS00421

AFE00178

INA00159

Furthermore Televis Driver Generation flag enables additional button :

Button Description

Add I/O Adds an input/output variable. A couple of parameters with
consecutive address are created.

Fix I/O Allows to modify an existing input/output variable. The
couple of parameters related to the variable must be
selected in order to modify the variable.

Fix Codes Allows to regenerate the Description Code of an inserted
description if it is present in the Eliwell dictionary or in the
custom dictionary (Custom Dictionaries, page 439).

Translate The Translate button translates the Description, Groups
and Measurement Unit columns into the selected software
language, where it is possible.

Add Add Multiple Remove Recalc Add I/O Fix Description languageFix I/O Fix Codes

EEPROM PARAMETERS

Configuration Page Layout
On the main node of the project:

• Identification Parameter: must be present to generate the driver. It is added
with the add button and the relative parameter is created among the status
variables.

• Model Name: commercial name with which the application is recognized.
• Mask: the mask that identifies the Project. It must be between 12100 and

12999 to allocate a range of masks not superimposed on the official Eliwell
masks.

• Baud Rate: it is possible to choose in a drop-down menu between 9600,
19200 or 38400.

Free Studio Plus
Configuration Programming Display Commissioning

File View Project On-line HelpDeveloper

C:\My Project\My Project.plcprj

Resources

Con guration

EWCM9000PRO

Modbus objects

EEPROM Parameters

Status variables

1
2

1
2

Enums
PressUM
CoolHeat

1
2 AbsReal
1
2 PIDtype
1
2 YesNo
1
2 GCSmode
1
2 DisableEnable
1
2 AlarmMode
1
2 AlarmPriority
1
2 TimeBand

BIOS Parameters

Menus and pages
I/O Mapping

Local

Field
Custom dictionaries

Description
Groups

Measurement Unit
Alarms
Web Site

BAC
net BACnet Objects

Device

Analog Value Objects

Binary Value Objects
Calendar Objects

Multi State Value Objects

Schedule Objects

Noti cation Class Objects

LON Pro le

CAN Exp busCAN

Expansion EVE 4200_1
RS485-1

RS485-2

Ethernet
Plugins

Televis command con guration

Unit parameters Folder

Unit parameters Sub Folder

!

1
2

CN5

Base Board

CN5CN4CN3CN2CN1

24
V

dc

5V
d c

G
N

D

A
I8

A
I7

A
I6

A
I5

A
I4

A
I2

A
I3

A
I 1

D
I8

D
I7

D
I6

D
I5

D
I4

D
I3

C
O

M
-D

I

D
I2

D
I1

C
O

M
-D

I

A
O

4

A
O

3

A
O

2

A
O

1

G
N

D

G
SRS485-2

Upper Board

A
I9

A
I1

0

A
I 1

1

A
I 1

2

5V
dc

G
N

D

24
V

dc

G
N

D

A
O

5

A
O

6

C
O

M
-D

I

D
I9

D
I1

0

D
I1

1

D
I1

2

CN11 CN12 CN13

Upper Board

CN14 CN15

C
12

D
O

12
-

D
O

12

D
O

11

D
O

10

D
O

9

C
91

0 1
1

D
O

1

C
1

D
O

2

C
2

C
34

D
O

3

D
O

4

C
56

7

D
O

5

D
O

6

D
O

7

D
O

8

D
O

8-C
8

EWCM9000PRO CONFIGURATION

Add

Data export

Televis driver generation

Identi cation Parameter

Export

Model Name

Mask (12100 - 12999)

12100

Baud Rate
9600
19200
38400

434 9MA10256.04

Televis Driver Generation

EEPROM Parameters
On the node EEPROM Parameters it is possible to fill in the information of each
parameter.

In the Description column must be entered the description of the parameter. It can
be inserted by writing in the cell or by opening the modal window that allows you to
choose between the strings of the Eliwell dictionary and the strings of the custom
dictionary (refer to Custom Dictionaries, page 439). If the string is inserted by the
custom dictionary, the description will be translated into various languages,
otherwise if the string is inserted by writing the description will always be fixed as it
is inserted.

EEPROM PARAMETERS
Add Multiple Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

Scale Offset Format Installer accesLevel Description

0

0

0

0

0

0

0

0

0

0

XXX.Y

Always visible

Line frequency

Select refrigerant type

Compressor activation policy

Engine room temperature set

Engine room temperature di!erential

Alarms mode (absolute or relative)

IO expansion modules number

General purpose regulator GP {0} cool/heat mode

General purpose regulator GP {0} setpoint

Level 2

Level 2

Level 1

Level 1
Level 1

Level 1

Level 1

Always visible
Level 2

XXX.Y

XXX.Y

XXX.Y

Unit

1

1

1

1

1

1

1

1

1

Unit of pressure measurement

Description

OK

Custom

De"ned

Search in: ENGLISH

Unit of pressure measurement

Cancel

The Code Description column cannot be changed. It represents the identification
code of the string in the Description column. If the string is manually compiled,
the description code automatically becomes CUS40000 . If instead the string is
entered by selecting from the modal window the relative description code of the
chosen string is associated (for example PLA00155) .

1

Installer access Level Description Progressive Description Code

Always visible Unit of pressure measurements CUS40000

Scale Offset

0

Unit Format Label

1 01.002-SbP

1

Installer access Level Description Progressive Description Code

Always visible Unit of pressure measurements PLA00155

Scale Offset

0

Unit Format Label

1 01.002-SbP

The Fix Codes button allows to regenerate the description code of an inserted
description if it is present in the Eliwell dictionary or in the custom dictionary
(Custom Dictionaries, page 439).

Application

1 parameters codes !xed.

OK

The Translate button translates the Description, Groups and Measurement
Unit columns into the selected software language, where it is possible.

9MA10256.04 435

Televis Driver Generation

Application

1 parameters description !xed.

OK

Usually the default language is set in English and so are Description, Groups
and Measurement Unit columns, but in compatible controllers it is possible to
change these columns language.

To change the parameter description language: File > Options > Language; once
selected the language flag the Accept box to enable the selection.

NOTE: To make the language change effective it is necessary to close and
reopen the project.

Program options

OK Annulla

Select

Merge

You need to restart the program
for the change to take e!ect

Select the program language

Accept

No responsibility or liability is assumed by Schneider Electric and its
subsidiaries for any errors or omissions in the informatical content of
this material including any errors or omissions in the translation, or

consequences arising out of or resulting from the use of the
information contained herein.

Custom toolsText EditorsGraphic Editor Language

tr-TR - Turkish(Parameters)
ru-RU - Russian(Parameters)
pt-PT - Portuguese(Parameters)
pl-PL - Polish(Parameters)
nl-NL - Dutch(Parameters)

it-IT - Italian(Parameters)
fr-FR - French(Parameters)
es-ES - Spanish(Parameters)

de-DE - German(Parameters)
CH-CH - Chinese

en-GB - English(Default)

ja-JP - Japanese

General

?

NOTE: The languages that have the specification “(Parameters)” indicate that
the software will not be translated into language but will be by default in
English, only the Descriptions, Groups and Measurement Units of
parameters and variables will be translated.

Status Variable
On the node Status Variable it is possible to fill in the information of each
variable.

In the Description column must be entered the description of the variable. It can
be inserted by writing in the cell or by opening the modal window that allows you to
choose between the strings of the Eliwell dictionary and the strings of the custom
dictionary (refer to Custom Dictionaries, page 439). If the string is inserted by the
custom dictionary, the description will be translated into various languages,
otherwise if the string is inserted by writing the description will always be fixed as it
is inserted.

436 9MA10256.04

Televis Driver Generation

In the Description column some strings have the symbol {0}. If one of these
descriptions is chosen, the symbol is replaced by the supervisors with the number
written in the Progressive column .

Description

Active AUX {0} Output

Progressive

1

The Code Description column cannot be changed. It represents the
identification code of the string in the Description column. If the string is entered
manually, the description code automatically becomes CUS40000. If instead the
string is entered by selecting from the modal window the relative description code
of the chosen string is associated (for example PLA00155).

Description Code

INP00184

CUS40000
Description

Custom

De!ned

Search in:

Engine room temperature probe

ENGLISH

OK Cancel

In the Label column there are mandatory cells. These cells cannot contain
spaces or special characters.

STATUS VARIABLES

#
1

1
2
3
4
5

Installer accessLevel
Always visible
Always visible

Always visible
Always visible

Engine room temperature probe
High pressure digital input 107

Uscita AUX {0} attiva
High pressure alarm 107 bar

Always visible

AI001

Installer PRO columns Televis columns

DI001

DO001
AL001

INP00184
STA00400

STA40196
ALM00420

TelevisIdenti!cationParCUS40000

Description Progressive Description Code Label Groups Groups Code

Add Add Multiple Remove Recalc Fix Codes Fix Description language

The Groups column allows you to insert groups to which the variable belongs. It is
accessed via a modal window. One or more groups can be entered and they can
be selected from the groups of the Eliwell dictionary and from the strings of the
custom dictionary (refer to Custom Dictionaries, page 439).

The Groups Code column cannot be changed. It represents the identification
code of the string in the Groups column.

9MA10256.04 437

Televis Driver Generation

Groups Code Meausement Unit Meausement Unit Code Visibility

num

HZ

num

num

INT(VMU00000,{1

FIX(VMU00020)

FIX(VMU00010)

FIX(VMU00020)

FIX(VMU00020)

INT(VMU00000,{1=VMU00

True

True

True

True

True

Description Code Label

01.002-SbP

01.003-LFr

01.004-Ert

01.005-rot

Groups

01.006-rSE

STATUS VARIABLES
Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

Groups

OK

Search in: ENGLISH

1° daily defrost

Cancel

Add group

delete

The Measurement Unit Code cannot be changed. It represents the identification
code of the string in Measurement unit column.

1

2

3

4

5

Groups Code Meausement Unit Meausement Unit Code Visibility

INT(VMU00000,{1

HZ

num

num

INT(VMU00000,{1

INT(VMU00000,{1=VMU00

FIX(VMU00010)

FIX(VMU00020)

FIX(VMU00020)

INT(VMU00000,{1=VMU00

False

True

True

True

True

Progressive

1

Description Code

INO00184

STA00400

STA40196

AIM00430

Label

01.002-SbP

01.003-LFr

01.004-Ert

01.005-rot

Groups

01.006-rSEINO00181

STATUS VARIABLES
Add Add Multiple Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

Type

Analog input

Write Sequence SoftScope

True

True

True

False

False

installer PRO columns Televis columns

Measurement Unit

OK

01.002-SbP

Cancel

Add option

delete rule

Fixed

Search in: ENGLISH

Custom

Parameter: Default Search in: ENGLISH °C

Search in: ENGLISH °C delete ruleSearch in: ENGLISH °C1Equal:

delete ruleSearch in: ENGLISH °C delete ruleSearch in: ENGLISH °C1Equal:

delete ruleSearch in: ENGLISH °C delete rule°C1Equal:

delete ruleSearch in: ENGLISH °C delete rule°C1Equal:

Values in the Visibility column can be True or False. If True, the variable is
exported to the Televis drivers, otherwise if False, the variable is not exported to
the Televis drivers.

The Type column defines the type of the variable.

The Write Sequence column allows to enter a series of commands taken from
the Televis Command Configuration node.

1

2

3

4

5

Groups Code Meausement Unit Meausement Unit Code Visibility

INT(VMU00000,{1

!ag

!ag

!ag

num

INT(VMU00000,{1=VMU00

FIX(VMU00010)

FIX(VMU00020)

FIX(VMU00020)

FIX(VMU00020)

False

False

False

False

False

Progressive

1

Description Code

INO00184

STA00400

STA40196

AIM00430

Label

01.002-SbP

01.003-LFr

01.004-Ert

01.005-rot

Groups

TelevisIdenti"cationParTelevisIdenti"cationPar

STATUS VARIABLES
Add Add Multiple Remove Recalc Add I/O Fix I/O Fix Codes Fix description language

Type

Analog input

Write Sequence SoftScope

True

True

True

False

False

installer PRO columns Televis columns

Digital input

Status

Alarm

SupportTelevisIdenti"cation

The Fix Codes button allows you to regenerate the description code of an
inserted description if it is present in the Eliwell dictionary or in the custom
dictionary (Custom Dictionaries, page 439).

438 9MA10256.04

Televis Driver Generation

Application

1 parameters codes !xed.

OK

The Translate button translates the Description, Groups and Measurement
Unit columns into the selected software language, where it is possible.

Application

1 parameters description !xed.

OK

BIOS Parameters
Add/Remove to Televis button defines if the BIOS parameter is exported or not in
the Televis driver. The export to the driver is useful for being able to modify this
parameter in real time by the supervisors.

1

2

3

4

5

6

7

8

9

10

Name New value Default value Description Add to Televis

Par_TAB

Par_PARMOD

Par_POLI

Temp_UM

Cfg_Al1

Cfg_Al2

Cfg_Al3

Cfg_Al4

Cfg_Al5

Cfg_Al6

0 Tab (map code) False

1031 Polycarbonate code False

False Parameter modi�ed False

0=°C Unit of temperature measurement False

2=NTC(103AT) Type of analogue input Al1 False

2=NTC(103AT) Type of analogue input Al2 False

2=NTC(103AT) Type of analogue input Al3 False

2=NTC(103AT) Type of analogue input Al4 False

2=NTC(103AT) Type of analogue input Al5 False

2=NTC(103AT) Type of analogue input Al6 False

BIOS PARAMETERS
Add to Televis Remove to Televis

Custom Dictionaries
The Custom Dictionary page allows you to enter a series of custom strings to be
used as description, groups or measurement unit. Each string is added with the
Add button and must include at least one language. To remove a string use the
Remove button.

Import button allows to import a custom dictionary.

Export button allows to export a custom dictionary.

9MA10256.04 439

Televis Driver Generation

1

French Spanish GermanEnglish Italian Russian

DESCRIPTION CUSTOM DICTIONARY
Resources

Con!guration

EWCM9000PRO

Modbus objects

EEPROM Parameters

Status variables
Enums

BIOS Parameters

Menus and pages
I/O Mapping

Local

Field
Custom dictionaries

Description
Groups

Measurement Unit
Alarms
Web Site

BAC
net BACnet Objects

Device

!

1
2

Add Remove Import Export

Televis Command Configuration
Televis Command Configuration node allows to enter a Televis command.

1

Complemented Modbus addres Name Value

TELEVIS COMMAND CONFIGURATION
Resources

Con!guration

EWCM9000PRO

Modbus objects

EEPROM Parameters

Status variables
Enums

BIOS Parameters

Menus and pages
I/O Mapping

Local

Field
Custom dictionaries

Description
Groups

Measurement Unit
Alarms
Web Site

BAC
net BACnet Objects

Device

Analog Value Objects

Binary Value Objects
Calendar Objects

Multi State Value Objects

Schedule Objects

Noti!cation Class Objects

LON Pro!le

CAN Exp busCAN

Expansion EVE 4200_1
RS485-1

RS485-2

Ethernet
Plugins

Televis command con!guration

Unit parameters Folder

Unit parameters Sub Folder

!

1
2

Add Remove

Projects Outputs
At each compilation of the driver, from menu Developer > Build Televis Driver,
the following files are created in the "Televis Driver" folder in the Project
directory:

• TelevisGo driver as TCDF[Mask].bin
• TelevisAir driver as TCDF[Mask].xml
• P0435_Msk[Masknumber]_[Target]_[Version].xsl as hidden file
• Custom dictionaries, that can be imported into TelevisGo as .txt file for each

language

CompilerOutput.xml

Name

LastDriverBuild.dat

P04354_Msk012123_04_04.xls

TCDF12123.bin

TCDF12123.bin.zip

TCDF12123.NetworkNaming.xml

TCDF12123.xml

440 9MA10256.04

Televis Driver Generation

Glossary
A
%:

According to the IEC standard, % is a prefix that identifies internal memory
addresses in the logic controller to store the value of program variables,
constants, I/O, and so on.

analog input:

Converts received voltage or current levels into numerical values. You can store
and process these values within the logic controller.

analog output:

Converts numerical values within the logic controller and sends out proportional
voltage or current levels.

application:

A program including configuration data, symbols, and documentation.

ARRAY:

The systematic arrangement of data objects of a single type in the form of a table
defined in logic controller memory. The syntax is as follows: ARRAY
[<dimension>] OF <Type>

Example 1: ARRAY [1..2] OF BOOL is a 1-dimensional table with 2 elements of
type BOOL.

Example 2: ARRAY [1..10, 1..20] OF INT is a 2-dimensional table with 10 x
20 elements of type INT.

ASCII:

(American standard code for Information Interchange) A protocol for representing
alphanumeric characters (letters, numbers, certain graphics, and control
characters).

assigned variable:

A variable is assigned if its location in the logic controller memory is known.

For example, the Water_pressure variable is said to be assigned through its
association with memory location %MW102.

B
BOOL:

(boolean) A basic data type in computing. A BOOL variable can have one of these
values: 0 (FALSE), 1 (TRUE). A bit that is extracted from a word is of type BOOL;
for example, %MW10.4 is a fifth bit of memory word number 10.

Boot application:

(boot application) The binary file that contains the application. Usually, it is stored
in the controller and allows the controller to boot on the application that the user
has generated.

byte:

A type that is encoded in an 8-bit format, ranging from 00 hex to FF hex.

9MA10256.04 441

C
conditional element:

Allows to implement conditions in the program in offline mode.

configuration:

The arrangement and interconnection of hardware components within a system
and the hardware and software parameters that determine the operating
characteristics of the system.

controller:

Automates industrial processes (also known as programmable logic controller or
programmable controller).

D
digital I/O:

(digital input/output) An individual circuit connection at the electronic module that
corresponds directly to a data table bit. The data table bit holds the value of the
signal at the I/O circuit. It gives the control logic digital access to I/O values.

DINT:

(double integer type) Encoded in 32-bit format.

DWORD:

(double word) Encoded in 32-bit format.

E
EDS:

(electronic data sheet) A file for fieldbus device description that contains, for
example, the properties of a device such as parameters and settings.

EEPROM:

(electrically erasable programmable read-only memory) A type of non-volatile
memory to store required data even when power is removed.

NOTE:
Ethernet:

A physical and data link layer technology for LANs, also known as IEEE 802.3.

expansion I/O module:

(expansion input/output module) Either a digital or analog module that adds
additional I/O to the base controller.

F
FBD:

(function block diagram) One of 5 languages for logic or control supported by the
standard IEC 61131-3 for control systems. Function block diagram is a graphically
oriented programming language. It works with a list of networks, where each
network contains a graphical structure of boxes and connection lines, which
represents either a logical or arithmetic expression, the call of a function block, a
jump, or a return instruction.

442 9MA10256.04

FB:

(function block) A convenient programming mechanism that consolidates a group
of programming instructions to perform a specific and normalized action, such as
speed control, interval control, or counting. A function block may comprise
configuration data, a set of internal or external operating parameters and usually
1 or more data inputs and outputs.

function block diagram:

One of the 5 languages for logic or control supported by the standard IEC 61131-
3 for control systems. Function block diagram is a graphically oriented
programming language. It works with a list of networks where each network
contains a graphical structure of boxes and connection lines representing either a
logical or arithmetic expression, the call of a function block, a jump, or a return
instruction.

function block:

A programming unit that has 1 or more inputs and returns 1 or more outputs. FBs
are called through an instance (function block copy with dedicated name and
variables) and each instance has a persistent state (outputs and internal
variables) from 1 call to the other.

Examples: timers, counters

function:

A programming unit that has 1 input and returns 1 immediate result. However,
unlike FBs, it is directly called with its name (as opposed to through an instance),
has no persistent state from one call to the next and can be used as an operand
in other programming expressions.

Examples: boolean (AND) operators, calculations, conversions (BYTE_TO_INT)

H
hex:

(hexadecimal)

I
I/O:

(input/output)

%I:

According to the IEC standard, %I represents an input bit (for example, a
language object of type digital IN).

IEC 61131-3:

Part 3 of a 3-part IEC standard for industrial automation equipment. IEC 61131-3
is concerned with controller programming languages and defines 2 graphical and
2 textual programming language standards. The graphical programming
languages are ladder diagram and function block diagram. The textual
programming languages include structured text and instruction list.

IL:

(instruction list) A program written in the language that is composed of a series of
text-based instructions executed sequentially by the controller. Each instruction
includes a line number, an instruction code, and an operand (refer to IEC 61131-
3).

instruction list language:

A program written in the instruction list language that is composed of a series of
text-based instructions executed sequentially by the controller. Each instruction
includes a line number, an instruction code, and an operand (see IEC 61131-3).

9MA10256.04 443

IP:

(Internet protocol Part of the TCP/IP protocol family that tracks the Internet
addresses of devices, routes outgoing messages, and recognizes incoming
messages.

%IW:

According to the IEC standard, %IW represents an input word register (for
example, a language object of type analog IN).

L
ladder diagram language:

A graphical representation of the instructions of a controller program with symbols
for contacts, coils, and blocks in a series of rungs executed sequentially by a
controller (see IEC 61131-3).

LED:

(light emitting diode) An indicator that illuminates under a low-level electrical
charge.

M
machine:

Consists of several functions and/or equipment.

master/slave:

The single direction of control in a network that implements the master/slave
mode.

Modbus:

The protocol that allows communications between many devices connected to the
same network.

%MW:

According to the IEC standard, %MW represents a memory word register (for
example, a language object of type memory word).

N
node:

An addressable device on a communication network.

P
PDO:

(process data object) An unconfirmed broadcast message or sent from a
producer device to a consumer device in a CAN-based network. The transmit
PDO from the producer device has a specific identifier that corresponds to the
receive PDO of the consumer devices.

PLC:

(programmable logic controller) An industrial computer used to automate
manufacturing, industrial, and other electromechanical processes. PLCs are
different from common computers in that they are designed to have multiple input
and output arrays and adhere to more robust specifications for shock, vibration,
temperature, and electrical interference among other things.

444 9MA10256.04

POU:

(program organization unit) A variable declaration in source code and a
corresponding instruction set. POUs facilitate the modular re-use of software
programs, functions, and function blocks. Once declared, POUs are available to
one another.

program:

The component of an application that consists of compiled source code capable
of being installed in the memory of a logic controller.

protocol:

A convention or standard definition that controls or enables the connection,
communication, and data transfer between 2 computing system and devices.

Q
%Q:

According to the IEC standard, %Q represents an output bit (for example, a
language object of type digital OUT).

R
RJ45:

A standard type of 8-pin connector for network cables defined for Ethernet.

RPDO:

(receive process data object) An unconfirmed broadcast message or sent from a
producer device to a consumer device in a CAN-based network. The transmit
PDO from the producer device has a specific identifier that corresponds to the
receive PDO of the consumer devices.

RS-232:

A standard type of serial communication bus, based on 3 wires (also known as
EIA RS-232C or V.24).

RS-485:

A standard type of serial communication bus, based on 2 wires (also known as
EIA RS-485).

RTU:

(remote terminal unit) A device that interfaces with objects in the physical world
to a distributed control system or SCADA system by transmitting telemetry data to
the system and/or altering the state of connected objects based on control
messages received from the system.

S
SFC:

(sequential function chart) A language that is composed of steps with associated
actions, transitions with associated logic condition, and directed links between
steps and transitions. (The SFC standard is defined in IEC 848. It is IEC 61131-3
compliant.)

SINT:

(signed integer) A 15-bit value plus sign.

string:

A variable that is a series of ASCII characters.

9MA10256.04 445

ST:

(structured text) A language that includes complex statements and nested
instructions (such as iteration loops, conditional executions, or functions). ST is
compliant with IEC 61131-3.

symbol:

A string of a maximum of 32 alphanumeric characters, of which the first character
is alphabetic. It allows you to personalize a controller object to facilitate the
maintainability of the application.

T
TCP:

(transmission control protocol) A connection-based transport layer protocol that
provides a simultaneous bi-directional transmission of data. TCP is part of the
TCP/IP protocol suite.

terminal block:

(terminal block) The component that mounts in an electronic module and provides
electrical connections between the controller and the field devices.

TPDO:

(transmit process data object) An unconfirmed broadcast message or sent from a
producer device to a consumer device in a CAN-based network. The transmit
PDO from the producer device has a specific identifier that corresponds to the
receive PDO of the consumer devices.

U
UDINT:

(unsigned double integer) Encoded in 32 bits.

UINT:

(unsigned integer) Encoded in 16 bits.

user defined function:

It allows you to create your own functions with one or more input parameters,
local variables, and a return value. The user-defined function can then be called
in operation blocks. A user-defined function is stored as part of the project and
downloaded to the logic controller as part of the application.

W
WORD:

A type encoded in a 16-bit format.

446 9MA10256.04

Index
A
Action

assign to a step.. 162
Application

definition of..21

B
Block

information ...149, 156
properties ...149, 155

Bookmark ... 160
IL .. 144

Branches
insert... 158

C
Coil

insert... 153
Comments

insert... 157
Contact

insert... 151
Custom workspace

basic unit... 141
elements ... 142
enable... 140
operation... 141

D
Developing programs, stages of22

E
Edit

enumeration .. 131
function ..143, 159
network .. 149, 155, 166
ST .. 159
structure.. 130
subrange... 133
typedef.. 129

Editor
Adding a Variable......................................201–202
FBD .. 145
global variable ... 121
Graphic ...39
IL .. 143
LD .. 150
PLC .. 143
POU ... 116
SFC .. 161
ST .. 159
Text...39
variable ... 167

Enumerator
create ... 131
delete.. 132
edit ... 131

Expression
insert... 157

F
FBD

create ... 145
editor .. 145

Function .. 255, 258, 262, 264, 267, 269, 273, 280, 283
edit ..143, 159

G
Global variable

edit ... 121

I
IL

bookmark .. 144
editor .. 143

J
Jump.. 165

L
LD

Coil / Contact Properties................................... 154
create ... 150
editor .. 150
insert coil... 153
insert contact ... 151

Library
export ... 111
import from.. 111
include .. 110
remove.. 110
undo import from.. 112
update... 113

M
Menu

debug ...26
developer ..27
edit ...27
file ..28
help ..28
on-line...29
options ..29
parameters..30
prg.. 63–64
project...30
recipes ..31
resources, visibility of 63–64
scheme ...31
set .. 63–64
target ...32, 62–63
tools..32
variables ... 29, 32
view ..33
window.. 34, 38

Minimum system requirements...............................17

N
Network

9MA10256.04 447

add / remove ..146, 150
connect block .. 147
edit .. 149, 155, 166
insert block ...147, 154
label...146, 151

Non-program data ...21

O
Operating modes

offline..22
online..22
simulation..22

Operator 258, 262–263, 268, 280–282

P
POU

editor .. 116
Program

associate to a task ... 125
compiling...95
definition of..21
manage into task.. 126

Program development, stages of22
Project

close ...46
creating...21
custom workspace ... 140
definition of..21
distribute ...46
download ..49
edit ...45
find in .. 138
menu ..30
new...43
open ...45
print ..43
save..44
save as ...44
toolbar...96
window, content of ... 114

S
SFC

connect elements... 162
create ... 161
editor .. 161
insert element .. 161

ST
create ... 159
editor .. 159

Structure
create ... 129
delete.. 130
edit ... 130

Subrange
create ... 132
delete.. 133
edit ... 133

System requirements...17

T
Task

assign a program at creation time...................... 115

associate a program... 125
configuration.. 126
managing program... 126
Overview... 125

Tool window
management ...37

Toolbar53, 215, 232, 323, 407
buttons..95
commissioning... 407
configuration..53
debug ...97
display ...323–325
FBD ..97
LD ..99
main ...95
network ...99
project...96
SFC ..98

Transition
condition of.. 163
conditional code... 164

Trigger window.. 215
graphic................230, 232, 234–238, 240–244, 246
text216–218, 220–222, 224–227, 229

Typedef
create ... 127
delete.. 129
edit ... 129

V
Variable

copy.. 170
create ..167, 170
delete.. 169
Edit ... 167
editor .. 167
global.. 118
insert... 156
local .. 122
Sampling... 203
sort ... 170

W
Watch list.. 199

autosave ... 199
Watch window

add item .. 195
data format .. 198
refresh .. 197
remove item .. 197
watch list ... 199

Workspace
custom.. 140
migration ... 140

448 9MA10256.04

Eliwell Controls s.r.l.
Via dell’Industria, 15 • Z.I. Paludi
32016 Alpago (BL)
Italy

+39 0437 986 111 (Operator)
+39 0437 986 100 (Italy)

www.eliwell.com

As standards, specifications, and design change from time to time,
please ask for confirmation of the information given in this publication.

© 2023 Eliwell. All rights reserved.

9MA10256.04

https://www.eliwell.com

	FREE Studio Plus
	Safety Information
	About the Book
	Getting Started with FREE Studio Plus
	Getting Started with FREE Studio Plus
	Introduction to FREE Studio Plus
	System Requirements and Supported Devices
	System Requirements
	Supported Devices
	Connection and Communication Accessories

	FREE Studio Plus Basics
	Creating Projects with FREE Studio Plus
	Developing Programs with FREE Studio Plus
	Operating Modes

	Software Interface
	Overview
	Welcome Window
	Main Window
	Project Toolbar
	Tabs
	Menu Bars
	Toolbars
	Tool Windows
	Status Bar

	Software Interface Customization
	Layout
	Toolbars
	Tool Windows Management
	Window Management
	Full Screen Mode
	Software Options

	Managing Projects
	Create a New Project
	Print a Project
	Save a Project
	Manage Existing Projects
	Distribute Projects
	Export CSV Files
	Select The Target Device
	Build All
	Download a Project to The Target
	Installer Software
	Close FREE Studio Plus

	Configuration
	The Configuration Tab
	Overview of the Configuration Window
	Menu Bar
	Toolbar

	Managing Resources Elements
	Overview
	Resources Window
	Supported Protocols

	Target Device
	Modbus Objects
	Target Menus
	Target Menu FREE Evolution/FREE Advance
	Target Menu FREE Smart
	Target Menu FREE Optima

	I/O Mapping
	Alarms
	Web Site
	CAN Expansion Bus
	CAN Expansion Bus Overview
	Using an Expansion Module as CAN Expansion Bus Field Slave
	CAN Expansion Bus for FREE Panel EVP
	CAN Custom Device
	Using a CAN Custom Device
	CAN Expansion Bus Field - Virtual Master Channels

	RS-485
	Overview
	Using a EVE7500 27 I/O as RS-485 Slave
	Generic Modbus Object Overview
	Generic Modbus Object Messages
	Modbus Custom Devices
	Using a Modbus Custom Device

	Ethernet
	Plugins

	Technical Reference
	Modbus Protocol
	Overview
	Data Types
	Function Codes

	Programming
	The Programming Tab
	Overview of the Programming Window
	Menu Bar
	Toolbars

	Project Options
	Project Options
	General Tab
	Code Generation Tab
	Build Output Tab
	Debug Tab
	Build Events Tab
	Cross Reference Tab
	Run-time Checks Tab
	Advanced Tab

	Working with Libraries
	Library Manager
	Exporting to a Library
	Importing from a Library or Another Source
	Updating Existing Libraries

	Managing Project Elements
	Project Window
	Program Organization Units
	Overview
	Creating a Program
	Creating a Function Block/Function
	Editing POUs
	Source Code Encryption/Decryption

	Variables
	Global Variables
	Local Variables
	Creating Multiple Variables

	Tasks
	Associating a Program to a Task
	Task Configuration

	Derived Data Types
	Overview
	Typedefs
	Structures
	Enumerations
	Subranges

	Browse the Project
	Overview
	Object Browser
	Search with the Find in Project Command

	Project Custom Workspace
	Overview
	Enable Custom Workspace Into an Existing Project
	Workspaces Migration
	Custom Workspace Basic Units
	Custom Workspace Operations
	Workspace Elements with Limitations

	Editing the Source Code
	Overview
	Instruction List (IL) Editor
	Overview
	Editing Functions
	Reference to PLC Objects
	Automatic Error Location
	Bookmarks

	Function Block Diagram (FBD) Editor
	Overview
	Creating a New FBD Document
	Adding/Removing Networks
	Labeling Networks
	Inserting and Connecting Blocks
	Editing Networks
	Modifying Properties of Blocks
	Getting Information on a Block
	Automatic Error Retrieval

	Ladder Diagram (LD) Editor
	Overview
	Creating a New LD Document
	Adding/Removing Networks
	Labeling Networks
	Inserting Contacts
	Inserting Coils
	Inserting Blocks
	Editing Coils and Contacts Properties
	Editing Networks
	Modifying Properties of Blocks
	Getting Information on a Block
	Automatic Error Retrieval
	Inserting Variables
	Inserting Constants
	Inserting Expression
	Comments
	Branches

	Structured Text (ST) Editor
	Overview
	Creating and Editing ST Objects
	Editing Functions
	Reference to PLC Objects
	Automatic Error Location
	Bookmarks

	Sequential Function Chart (SFC) Editor
	Overview
	Creating a New SFC Document
	Inserting a New SFC Element
	Connecting SFC Elements
	Assigning an Action to a Step
	Specifying a Conditional Transition
	Assigning Conditional Code to a Transition
	Specifying the Destination of a Jump
	Editing SFC Networks

	Variables Editor
	Overview
	Opening a Variables Editor
	Creating a New Variable
	Editing Variables
	Deleting Variables
	Sorting Variables
	Copying Variables
	Creating an Error Variable

	Compiling
	Overview
	Compiling the Project
	Overview
	Image File Loading

	Compiler Output
	Overview
	Compiler Errors

	Command-Line Compiler

	Launching the Application
	Overview
	Setting Up the Communication
	Overview
	Saving the Last Used Communication Port

	Connect to a Device
	On-Line Status
	Connection Status
	Project Status

	Downloading the Application
	Control the PLC Execution

	Simulation
	Simulation Function
	Overview
	Simulation Environment Components

	Simulation Operating Modes
	Simulation with FREE Studio Plus
	Simulation Interface
	Simulation Interface Overview
	Control Panel
	Target Panel
	I/O Panels
	I/O Panels List

	Debugging
	Overview
	Watch Window
	Overview
	Opening and Closing the Watch Window
	Adding Items to the Watch Window
	Removing a Variable
	Refreshment of Values
	Changing the Format of Data
	Working with Watch Lists
	Autosave Watch List

	Oscilloscope
	Overview
	Opening and Closing the Oscilloscope
	Adding Items to the Oscilloscope
	Removing a Variable
	Variables Sampling
	Controlling Data Acquisition and Display
	Changing the Polling Rate
	Saving and Printing the Graph

	Edit and Debug Mode
	Live Debug
	Overview
	SFC Simulation
	LD Simulation
	FBD Simulation
	IL and ST Simulation

	Triggers
	Trigger Window
	Debugging with Trigger Windows

	Graphic Triggers
	Graphic Trigger Window
	Debugging with the Graphic Trigger Window

	Language Reference
	Common Elements
	Overview
	Basic Elements
	Elementary Data Types
	Derived Data Types
	Literals
	Variables
	Program Organization Units
	Operator and Standard Blocks

	Instruction List (IL)
	Overview
	Syntax and Semantics
	Standard Operators
	Calling Functions and Function Blocks

	Function Block Diagram (FBD)
	Overview
	Representation of Lines and Blocks
	Direction of Flow in Networks
	Evaluation of Networks
	Execution Control Elements

	Ladder Diagram (LD)
	Overview
	Power Rails
	Link Elements and States
	Contacts
	Coils
	Operators, Functions, and Function Blocks

	Structured Text (ST)
	Overview
	Expressions
	Statements in ST
	Assignments
	Function and Function Block Statements
	Selection Statements
	Iteration Statements

	IFDEF Statement to Exclude a Portion of Code
	Using IFDEF in ST Languages
	Using IFDEF in LD Languages
	Using IFDEF in FBD Languages
	IFDEF Supported Format

	Sequential Function Chart (SFC)
	Overview
	Steps
	Transitions
	Rules of Evolution
	SFC Control Flags
	Check an SFC POU from Other Programs

	FREE Studio Plus Language Extensions
	Overview
	Macros
	Pointers
	Waiting Statement

	Display
	The Display Tab
	Overview of the Display Window
	Menu Bar
	Toolbar

	Managing Display Elements
	Managing Pages
	Pages Overview
	Child Pages
	Pop-up Pages
	Basic Page Settings
	Basic Page Operations

	Organization of Created Pages
	HMI Actions Window
	Project Properties
	Frameset
	Multiple Pages Management
	Automatic Documentation

	Insertion of Controls
	Controls
	Static
	Graphic
	Check Box
	Combo Box
	Image
	Animation
	Edit Box
	Button
	Text Box
	Progress Bar

	Editing Control Properties
	Visibility and Updating of Controls
	Page and Object Properties
	Frame Set
	Child Page
	Pop-Up Page
	Static
	Line
	Rectangle
	Edit Box
	Format Specification - Printf
	Image
	Animation
	Button
	Progress Bar

	Declaration of Variables
	Types of Variables
	Data Management
	Description of Parameter File

	Using Advanced Features
	Events
	Resources

	File for Target Description
	Functions and Function Blocks for HMI
	Functions for HMI
	Function Blocks for HMI

	Commissioning
	The Commissioning Tab
	Overview of the Commissioning Window
	Menu Bar
	Toolbar

	Managing Commissioning Elements
	Overview
	Commissioning Window
	Read and Write BIOS Parameters

	Target Device
	Overview
	General
	Communication
	Information
	Download Settings
	Other Operations

	Debugging
	Overview
	Commissioning Watch Window
	Commissioning Oscilloscope Window

	Appendices
	Installer Pro Project
	Overview
	Compatibility Range
	Installer Pro Project Features
	PLC Parameters Navigation Tree
	I/O Definition
	Softscope
	Commissioning Softscope Window

	Automatic Generation of Expansion Code

	Televis Driver Generation
	Overview
	Configuration Page Layout
	EEPROM Parameters
	Status Variable
	BIOS Parameters
	Custom Dictionaries
	Televis Command Configuration

	Projects Outputs

	Glossary
	Index

